skip to main content


Search for: All records

Creators/Authors contains: "Haeri, Hossein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vehicles can easily lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of CAVs into a road surface grid. In addition, through clustering the friction grids further, an insight of this work is that the friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space, a friction value, and a confidence interval within the box. To demonstrate the method, a simulation is presented that integrates traffic simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface, where friction is changing in space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured effectively by collecting and aggregating the friction data from CAVs. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Moving averages are widely used to estimate time-varying parameters, especially when the underlying dynamic model is unknown or uncertain. However, the selection of the optimal window length over which to evaluate the moving averages remains an unresolved issue in the field. In this paper, we demonstrate the use of Allan variance to identify the characteristic timescales of a noisy random walk from historical measurements. Further, we provide a closed-form, analytical result to show that the Allan variance-informed averaging window length is indeed the optimal averaging window length in the context of moving average estimation of noisy random walks. We complement the analytical proof with numerical results that support the solution, which is also reflected in the authors’ related works. This systematic methodology for selecting the optimal averaging window length using Allan variance is expected to widely benefit practitioners in a diverse array of fields that utilize the moving average estimation technique for noisy random walk signals. 
    more » « less
  3. Vehicles are highly likely to lose control unexpectedly when encountering unforeseen hazardous road friction conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road friction map can be created by aggregating information from vehicles. A challenge in the creation of these global friction maps is the very large quantity of data involved, and that the measurements populating the map are generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of CAVs into a road surface grid. And through clustering the friction grids further, an insight of this work is that the friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space and a friction value within the box. To demonstrate the method, a simulation is presented that integrates traffic simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface where friction is changing in space, particularly over a bridge segment. The experimental results indicate that the road friction distribution can be measured effectively by collecting and aggregating the friction data from CAVs. By defining a cloud-based data sharing method for the networks of CAVs, this road friction mapping strategy provides great potential for improving CAVs' control performance and stability via database-mediated feedback systems. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    decrease query response time with limited main memory and storage space, data reduction techniques that preserve data quality are needed. Existing data reduction techniques, however, are often computationally expensive and rely on heuristics for deciding how to split or reduce the original dataset. In this paper, we propose an effective granular data reduction technique for temporal databases, based on Allan Variance (AVAR). AVAR is used to systematically determine the temporal window length over which data remains relevant. The entire dataset to be reduced is then separated into granules with size equal to the AVAR-determined window length. Data reduction is achieved by generating aggregated information for each such granule. The proposed method is tested using a large database that contains temporal information for vehicular data. Then comparison experiments are conducted and the outstanding runtime performance is illustrated by comparing with three clustering-based data reduction methods. The performance results demonstrate that the proposed Allan Variance-based technique can efficiently generate reduced representation of the original data without losing data quality, while significantly reducing computation time. 
    more » « less
  7. null (Ed.)