skip to main content

Search for: All records

Creators/Authors contains: "Hajij, Mustafa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 18, 2024
  2. In this paper, we examine the properties of the Jones polynomial using dimensionality reduction learning techniques combined with ideas from topological data analysis. Our data set consists of more than 10 million knots up to 17 crossings and two other special families up to 2001 crossings. We introduce and describe a method for using filtrations to analyze infinite data sets where representative sampling is impossible or impractical, an essential requirement for working with knots and the data from knot invariants. In particular, this method provides a new approach for analyzing knot invariants using Principal Component Analysis. Using this approach on the Jones polynomial data, we find that it can be viewed as an approximately three-dimensional subspace, that this description is surprisingly stable with respect to the filtration by the crossing number, and that the results suggest further structures to be examined and understood. 
    more » « less
  3. null (Ed.)
    The Reeb graph of a scalar function that is defined on a domain gives a topologically meaningful summary of that domain. Reeb graphs have been shown in the past decade to be of great importance in geometric processing, image processing, computer graphics, and computational topology. The demand for analyzing large data sets has increased in the last decade. Hence, the parallelization of topological computations needs to be more fully considered. We propose a parallel augmented Reeb graph algorithm on triangulated meshes with and without a boundary. That is, in addition to our parallel algorithm for computing a Reeb graph, we describe a method for extracting the original manifold data from the Reeb graph structure. We demonstrate the running time of our algorithm on standard datasets. As an application, we show how our algorithm can be utilized in mesh segmentation algorithms. 
    more » « less
  4. null (Ed.)
    The PageRank of a graph is a scalar function defined on the node set of the graph which encodes nodes centrality information of the graph. In this article we use the PageRank function along with persistent homology to obtain a scalable graph descriptor and utilize it to compare the similarities between graphs. For a given graph G(V, E), our descriptor can be computed in O(|E|α(|V|)), where a is the inverse Ackermann function which makes it scalable and computable on massive graphs. We show the effectiveness of our method by utilizing it on multiple shape mesh datasets. 
    more » « less