skip to main content


Search for: All records

Creators/Authors contains: "Hameduddin, Ismail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of formulating perturbative expansions of the conformation tensor, which is a positive definite tensor representing polymer deformation in viscoelastic flows. The classical approach does not explicitly take into account that the perturbed tensor must remain positive definite – a fact that has important physical implications, e.g. extensions and compressions are represented similarly to within a negative sign, when physically the former are unbounded and the latter are bounded from below. Mathematically, the classical approach assumes that the underlying geometry is Euclidean, and this assumption is not satisfied by the manifold of positive definite tensors. We provide an alternative formulation that retains the conveniences of classical perturbation methods used for generating linear and weakly nonlinear expansions, but also provides a clear physical interpretation and a mathematical basis for analysis. The approach is based on treating a perturbation as a sequence of successively smaller deformations of the polymer. Each deformation is modelled explicitly using geodesics on the manifold of positive definite tensors. Using geodesics, and associated geodesic distances, is the natural way to model perturbations to positive definite tensors because it is consistent with the manifold geometry. Approximations of the geodesics can then be used to reduce the total deformation to a series expansion in the small perturbation limit. We illustrate our approach using direct numerical simulations of the nonlinear evolution of Tollmien–Schlichting waves. 
    more » « less
  2. This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework. 
    more » « less