We consider the problem of formulating perturbative expansions of the conformation tensor, which is a positive definite tensor representing polymer deformation in viscoelastic flows. The classical approach does not explicitly take into account that the perturbed tensor must remain positive definite – a fact that has important physical implications, e.g. extensions and compressions are represented similarly to within a negative sign, when physically the former are unbounded and the latter are bounded from below. Mathematically, the classical approach assumes that the underlying geometry is Euclidean, and this assumption is not satisfied by the manifold of positive definite tensors. We provide an alternative formulation that retains the conveniences of classical perturbation methods used for generating linear and weakly nonlinear expansions, but also provides a clear physical interpretation and a mathematical basis for analysis. The approach is based on treating a perturbation as a sequence of successively smaller deformations of the polymer. Each deformation is modelled explicitly using geodesics on the manifold of positive definite tensors. Using geodesics, and associated geodesic distances, is the natural way to model perturbations to positive definite tensors because it is consistent with the manifold geometry. Approximations of the geodesics can then be used to reduce the total deformation to a series expansion in the small perturbation limit. We illustrate our approach using direct numerical simulations of the nonlinear evolution of Tollmien–Schlichting waves.
more »
« less
Geometric decomposition of the conformation tensor in viscoelastic turbulence
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
more »
« less
- Award ID(s):
- 1652244
- PAR ID:
- 10084482
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 842
- ISSN:
- 0022-1120
- Page Range / eLocation ID:
- 395 to 427
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary We propose and investigate an additive regression model for symmetric positive-definite matrix-valued responses and multiple scalar predictors. The model exploits the Abelian group structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric positive-definite matrices and naturally extends to general Abelian Lie groups. The proposed additive model is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions, but also allows one to generalize the proposed additive model to general Riemannian manifolds. Optimal asymptotic convergence rates and normality of the estimated component functions are established, and numerical studies show that the proposed model enjoys good numerical performance, and is not subject to the curse of dimensionality when there are multiple predictors. The practical merits of the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.more » « less
-
From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so-called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems.more » « less
-
Pressure-driven flows of viscoelastic fluids in narrow non-uniform geometries are common in physiological flows and various industrial applications. For such flows, one of the main interests is understanding the relationship between the flow rate$$q$$and the pressure drop$$\Delta p$$, which, to date, is studied primarily using numerical simulations. We analyse the flow of the Oldroyd-B fluid in slowly varying arbitrarily shaped, contracting channels and present a theoretical framework for calculating the$$q-\Delta p$$relation. We apply lubrication theory and consider the ultra-dilute limit, in which the velocity profile remains parabolic and Newtonian, resulting in a one-way coupling between the velocity and polymer conformation tensor. This one-way coupling enables us to derive closed-form expressions for the conformation tensor and the flow rate–pressure drop relation for arbitrary values of the Deborah number ($$De$$). Furthermore, we provide analytical expressions for the conformation tensor and the$$q-\Delta p$$relation in the high-Deborah-number limit, complementing our previous low-Deborah-number lubrication analysis. We reveal that the pressure drop in the contraction monotonically decreases with$$De$$, having linear scaling at high Deborah numbers, and identify the physical mechanisms governing the pressure drop reduction. We further elucidate the spatial relaxation of elastic stresses and pressure gradient in the exit channel following the contraction and show that the downstream distance required for such relaxation scales linearly with$$De$$.more » « less
-
Budgets of turbulent kinetic energy (TKE) and turbulent potential energy (TPE) at different scales $$\ell$$ in sheared, stably stratified turbulence are analysed using a filtering approach. Competing effects in the flow are considered, along with the physical mechanisms governing the energy fluxes between scales, and the budgets are used to analyse data from direct numerical simulation at buoyancy Reynolds number $$Re_b=O(100)$$ . The mean TKE exceeds the TPE by an order of magnitude at the large scales, with the difference reducing as $$\ell$$ is decreased. At larger scales, buoyancy is never observed to be positive, with buoyancy always converting TKE to TPE. As $$\ell$$ is decreased, the probability of locally convecting regions increases, though it remains small at scales down to the Ozmidov scale. The TKE and TPE fluxes between scales are both downscale on average, and their instantaneous values are correlated positively, but not strongly so, and this occurs due to the different physical mechanisms that govern these fluxes. Moreover, the contributions to these fluxes arising from the sub-grid fields are shown to be significant, in addition to the filtered scale contributions associated with the processes of strain self-amplification, vortex stretching and density gradient amplification. Probability density functions (PDFs) of the $Q,R$ invariants of the filtered velocity gradient are considered and show that as $$\ell$$ increases, the sheared-drop shape of the PDF becomes less pronounced and the PDF becomes more symmetric about $R=0$ .more » « less
An official website of the United States government

