 Award ID(s):
 1652244
 NSFPAR ID:
 10084481
 Date Published:
 Journal Name:
 Journal of Fluid Mechanics
 Volume:
 858
 ISSN:
 00221120
 Page Range / eLocation ID:
 377 to 406
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the nonEuclidean geometry of the set of positive definite tensors. Dragreduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.more » « less

A general theoretical and computational procedure for dealing with an exponentiallogarithmic kinematic model for transformation stretch tensor in a multiphase phase field approach to stress and temperatureinduced martensitic transformations with N martensitic variants is developed for transformations between all possible crystal lattices. This kinematic model, where the natural logarithm of transformation stretch tensor is a linear combination of natural logarithm of the Bain tensors, yields isochoric variant–variant transformations for the entire transformation path. Such a condition is plausible and cannot be satisfied by the widely used kinematic model where the transformation stretch tensor is linear in Bain tensors. Earlier general multiphase phase field studies can handle commutative Bain tensors only. In the present treatment, the exact expressions for the first and second derivatives of the transformation stretch tensor with respect to the order parameters are obtained. Using these relations, the transformation work for austenite ↔ martensite and variant ↔ variant transformations is analyzed and the thermodynamic instability criteria for all homogeneous phases are expressed explicitly. The finite element procedure with an emphasis on the derivation of the tangent matrix for the phase field equations, which involves second derivatives of the transformation deformation gradients with respect to the order parameters, is developed. Change in anisotropic elastic properties during austenite–martensitic variants and variant–variant transformations is taken into account. The numerical results exhibiting twinned microstructures for cubic to orthorhombic and cubic to monoclinicI transformations are presented.

Abstract We develop deterministic perturbation bounds for singular values and vectors of orthogonally decomposable tensors, in a spirit similar to classical results for matrices such as those due to Weyl, Davis, Kahan and Wedin. Our bounds demonstrate intriguing differences between matrices and higher order tensors. Most notably, they indicate that for higher order tensors perturbation affects each essential singular value/vector in isolation, and its effect on an essential singular vector does not depend on the multiplicity of its corresponding singular value or its distance from other singular values. Our results can be readily applied and provide a unified treatment to many different problems involving higher order orthogonally decomposable tensors. In particular, we illustrate the implications of our bounds through connected yet seemingly different highdimensional data analysis tasks: the unsupervised learning scenario of tensor SVD and the supervised task of tensor regression, leading to new insights in both of these settings.

We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor Tcw,q is the square of its border rank for q > 2 and that the border rank of its Kronecker cube is the cube of its border rank for q > 4. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11) and explicitly by Bl¨aser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range. In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen’s laser method, introducing a skewsymmetric version of the Coppersmith– Winograd tensor, Tskewcw,q. For q = 2, the Kronecker square of this tensor coincides with the 3 × 3 determinant polynomial, det3 ∈ C9 ⊗ C9 ⊗ C9, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two. We determine new upper bounds for the (Waring) rank and the (Waring) border rank of det3, exhibiting a strict submultiplicative behaviour for Tskewcw,2 which is promising for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3 ⊗ C3 ⊗ C3.more » « less

Abstract This paper extends the Madelung–Bohm formulation of quantum mechanics to describe the timereversible interaction of classical and quantum systems. The symplectic geometry of the Madelung transform leads to identifying hybrid quantum–classical Lagrangian paths extending the Bohmian trajectories from standard quantum theory. As the classical symplectic form is no longer preserved, the nontrivial evolution of the Poincaré integral is presented explicitly. Nevertheless, the classical phasespace components of the hybrid Bohmian trajectory identify a Hamiltonian flow parameterized by the quantum coordinate and this flow is associated to the motion of the classical subsystem. In addition, the continuity equation of the joint quantum–classical density is presented explicitly. While the von Neumann density operator of the quantum subsystem is always positivedefinite by construction, the hybrid density is generally allowed to be unsigned. However, the paper concludes by presenting an infinite family of hybrid Hamiltonians whose corresponding evolution preserves the sign of the probability density for the classical subsystem.