Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Contribution: In this work-in-progress paper we describe the process of creating and validating a conceptual assessment in the field of sedimentology for undergraduate geoscience courses. The mechanism can aid future geoscience educators and researchers in the process of academic assessment development aligned with learning objectives in these courses. Background: Prior literature review supports the benefits of using active learning tools in STEM (Science, Technology, Engineering, and Mathematics) courses. This paper is part of a larger project to develop and incorporate research-based active learning software in sedimentology and other geoscience courses to improve grade point average (GPA) and time to graduation for Hispanic students at Texas A&M University. To evaluate the novel tool, we designed and validated the conceptual assessment instrument presented in this work. Research Question: What is the process to develop and validate a conceptual assessment for sedimentology? Methodology: This paper follows quantitative analysis and the assessment triangle approach and focuses on cognition, observation, and interpretation to design and evaluate the conceptual assessment. In the cognition element of the triangle, we explain the mechanism for creating the assessment instrument using students' learning objectives. The observation element explains the mechanism of data collection and the instrument revision. The interpretation element explains the results of the validation process using item response theory and reliability measures. We collected the conceptual assessment data from 17 participants enrolled in two courses where sedimentology topics are taught. Participants were geology majors in one of the courses and engineering majors in the other. Findings: The team developed a conceptual assessment that included eight multiple-choice (MCQ) and four open-ended response questions. The results of the design process described the conceptualization of questions and their validation. Also, the validity of created rubrics was established using inter-rater reliability measures, which showed good agreement between raters. Additionally, the results of the validation process indicated that the conceptual assessment was designed for students with average abilities.more » « lessFree, publicly-accessible full text available October 13, 2025
-
Sketching is a valuable skill in engineering for representing information, developing design ideas, and communicating technical and abstract information. It is an important means of developing spatial abilities which are predictive of success in STEM fields. While existing spatial ability tests are predictive of engineering visualization skills, they do not allow students to develop drawing skills through spatial exercises. The Object Assembly Sketching test examines sketching skills with object assembly tasks using mental imagery and mental rotation. This study focuses on the development and pilot testing of a new sketching skills test using object assembly exercises. We piloted the test in two sections of an undergraduate mechanical engineering design course. Inter-rater reliability of two raters scoring students sketches on eight criteria was acceptable across exercises, but low across criteria. Students scored highest on Representation Accuracy, Scale, and Symmetry, and exhibited complex understanding of perspective sketching. We intend to revise the rubric to score for aesthetics and make instructions more precise.more » « less
-
This Research Work-In-Progress reports the implementation of an Object Assembly Test for sketching skills in an undergraduate mechanical engineering graphics course. Sketching is essential for generating and refining ideas, and for communication among team members. Design thinking is supported through sketching as a means of translating between internal and external representations, and creating shared representations of collaborative thinking. While many spatial tests exist in engineering education, these tests have not directly used sketching or tested sketching skill. The Object Assembly Test is used to evaluate sketching skills on 3-dimensional mental imagery and mental rotation tasks in 1- and 2-point perspective. We describe revisions to the Object Assembly Test skills and grading rubric since its pilot test, and implement the test in an undergraduate mechanical engineering course for further validation. We summarize inter-rater reliability for each sketching exercise and for each grading metric for a sample of sketches, with discussion of score use and interpretation.more » « less
-
In 2016 the Hispanic enrollment in computer science and computer engineering for both undergraduate and graduate students at Texas A&M University initially sat at 17.9% and has decreased to approximately 11.76% in 2021, with undergraduate Hispanic enrollment in computing reducing from almost 22% down to under 15% in that same time frame[1]. This significant shift in Hispanic student representation spurred the development of this organization, Aggie Hispanics In Computing (AHIC), to create a computing community and provide support focused around the shared experiences of being part of a minority group at a predominately white institution (PWI) in an even less diverse discipline. This organization is not a lone member of Hispanic serving organizations at Texas A&M University, overall considered a Hispanic serving institution (HSI), rather it was designed to focus particularly on serving Hispanic students in the computer science and computer engineering disciplines at Texas A&M University. Since the organization was founded during the COVID-19 pandemic in 2020, AHIC has grown significantly in membership, financial support, and goal attainment focused on increasing representation of Hispanic students within the computing disciplines at Texas A&M University. The organization has grown from 6 to over 50 members from various disciplines in the past year alone. AHIC has also received financial support from a multitude of companies such as General Motors, Chevron, and others. The overall goal of AHIC is to create a supportive community for minorities in various computing fields. This community has been grown through hosting supporting events that provide information and resources about university research, professional career opportunities, workshops, and mentorship programs. AHIC has also initiated several long-term initiatives such as peer teaching for introductory computer science courses in the past year. We have focused on company panels and alumni coaching in which company representatives and alumni provide career advice for currently enrolled students. The organization has also hosted seminars and workshops educating freshmen on new computing skills and opportunities that a computer science and computer engineering degree can provide. This paper will discuss the need recognized for a minority focused and serving computing organization and how the formation of Aggie Hispanics In Computing provides a community that is promising for the future of minorities in the computing field at Texas A&M University.more » « less
-
In this Lessons Learned paper, we explore the themes uncovered from a series of facilitated faculty discussions on moving their course back to face to face teaching after the switch to online. The Institute at Anonymous University administrates over 100 faculty whose primary department appointments and teaching assignments are in either engineering or education. Over the last two years, the Institute hosted numerous conversations for faculty members to share experiences, research, and assessments of teaching successes and concerns as they changed instructional modalities, both with the initial move online and the subsequent move back face to face. From these conversations, faculty agree that some things during the move to online instruction, such as office hours, video archives of lectures, and some activities in break-out rooms appear to enhance student learning. Yet data showed that students believed the online experience was less desirable than face to face courses. Now that we have had a near complete semester where most classes were required to be held in the face to face mode, we are hosting conversations with faculty to understand the changes they are now making to their teaching because of the experiences from online instruction.more » « less