skip to main content


Search for: All records

Creators/Authors contains: "Han, Su Yeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Due to climate change and rapid urbanization, Urban Heat Island (UHI), featuring significantly higher temperature in metropolitan areas than surrounding areas, has caused negative impacts on urban communities. Temporal granularity is often limited in UHI studies based on satellite remote sensing data that typically has multi-day frequency coverage of a particular urban area. This low temporal frequency has restricted the development of models for predicting UHI. To resolve this limitation, this study has developed a cyber-based geographic information science and systems (cyberGIS) framework encompassing multiple machine learning models for predicting UHI with high-frequency urban sensor network data combined with remote sensing data focused on Chicago, Illinois, from 2018 to 2020. Enabled by rapid advances in urban sensor network technologies and high-performance computing, this framework is designed to predict UHI in Chicago with fine spatiotemporal granularity based on environmental data collected with the Array of Things (AoT) urban sensor network and Landsat-8 remote sensing imagery. Our computational experiments revealed that a random forest regression (RFR) model outperforms other models with the prediction accuracy of 0.45 degree Celsius in 2020 and 0.8 degree Celsius in 2018 and 2019 with mean absolute error as the evaluation metric. Humidity, distance to geographic center, and PM2.5concentration are identified as important factors contributing to the model performance. Furthermore, we estimate UHI in Chicago with 10-min temporal frequency and 1-km spatial resolution on the hottest day in 2018. It is demonstrated that the RFR model can accurately predict UHI at fine spatiotemporal scales with high-frequency urban sensor network data integrated with satellite remote sensing data.

     
    more » « less
  2. Understanding human movements in the face of natural disasters is critical for disaster evacuation planning, management, and relief. Despite the clear need for such work, these studies are rare in the literature due to the lack of available data measuring spatiotemporal mobility patterns during actual disasters. This study explores the spatiotemporal patterns of evacuation travels by leveraging users’ location information from millions of tweets posted in the hours prior and concurrent to Hurricane Matthew. Our analysis yields several practical insights, including the following: (1) We identified trajectories of Twitter users moving out of evacuation zones once the evacuation was ordered and then returning home after the hurricane passed. (2) Evacuation zone residents produced an unusually large number of tweets outside evacuation zones during the evacuation order period. (3) It took several days for the evacuees in both South Carolina and Georgia to leave their residential areas after the mandatory evacuation was ordered, but Georgia residents typically took more time to return home. (4) Evacuees are more likely to choose larger cities farther away as their destinations for safety instead of nearby small cities. (5) Human movements during the evacuation follow a log-normal distribution. 
    more » « less
  3. Situation awareness plays an important role in disaster response and emergency management. Displaying real-time location-based social media messages along with videos, pictures, and hashtags during a disaster event could help first responders improve their situation awareness. A geo-targeted event observation (Geo) Viewer was developed for monitoring real-time social media messages in target areas with four major functions: (1) real-time display of geo-tagged tweets within the target area; (2) interactive mapping functions; (3) spatial, text, and temporal search functions using keywords, spatial boundaries, or dates; and (4) manual labeling and text-tagging of messages. Different from traditional web GIS maps, the user interface design of GeoViewer provides the interactive display of multimedia content and maps. The front-end user interface to visualize and query tweets is built with open source programming libraries using server-side MongoDB. GeoViewer is built for assisting emergency responses and disaster management tasks by tracking disaster event impacts, recovery activities, and residents’ needs in the target region. 
    more » « less