skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harrison, Autumn‐Lynn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Identifying the migration routes and stopover sites used by declining species is critical for developing targeted conservation actions. Long-distance migratory shorebirds are among the groups of birds declining most rapidly, yet we frequently lack detailed knowledge about the routes and stopover sites they use during their hemisphere-spanning migrations. This is especially true for species that migrate through mid-continental regions in the Western Hemisphere. We therefore used satellite transmitters to track 212 individuals of 6 shorebird species during their southward migrations—Pluvialis dominica (American Golden-Plover), Limosa haemastica (Hudsonian Godwit), Tringa flavipes (Lesser Yellowlegs), and Calidris subruficollis (Buff-breasted Sandpiper), C. melanotos (Pectoral Sandpiper), and Bartramia longicauda (Upland Sandpiper)—as they crossed the Amazon Basin of South America, a region from which reports of shorebird numbers are increasing but remain relatively rare. Our results make clear that the Amazon Basin provides stopover habitat for a large number of shorebirds: more than 74% of individuals tracked crossing the Amazon Basin stopped over in the region for an average of 2–14 days, with some spending the entire nonbreeding season there. All species selected stopover sites along the region’s many rivers and lakes, while within stopover sites each species exhibited distinct habitat preferences. The timing of stopovers within sub-basins of the Amazon Basin also coincided with periods of low water, when the muddy, shallow water habitats preferred by most shorebirds are likely plentiful. Together, our results highlight the need for detailed investigations into shorebird abundance and distribution within the Amazon Basin, threats to shorebirds within particular subbasins, and links between shorebird conservation efforts and those targeting the myriad other species that inhabit this dynamic, hyper-diverse region. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature. 
    more » « less
  4. Abstract Accurately quantifying species’ area requirements is a prerequisite for effective area‐based conservation. This typically involves collecting tracking data on species of interest and then conducting home‐range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home‐range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross‐validation to quantify bias in empirical home‐range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation‐induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home‐range estimates. As a correction, we tested whether data thinning or autocorrelation‐informed home‐range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation‐informed home‐range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum. 
    more » « less