Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            HRI research using autonomous robots in real-world settings can produce results with the highest ecological validity of any study modality, but many difficulties limit such studies’ feasibility and effectiveness. We propose VID2REAL HRI, a research framework to maximize real-world insights offered by video-based studies. The VID2REAL HRI framework was used to design an online study using first-person videos of robots as real-world encounter surrogates. The online study (n = 385) distinguished the within-subjects effects of four robot behavioral conditions on perceived social intelligence and human willingness to help the robot enter an exterior door. A real-world, between subjects replication (n = 26) using two conditions confirmed the validity of the online study’s findings and the sufficiency of the participant recruitment target (n = 22) based on a power analysis of online study results. The VID2REAL HRI framework offers HRI researchers a principled way to take advantage of the efficiency of video-based study modalities while generating directly transferable knowledge of real-world HRI. Code and data from the study are provided at vid2real.github.io/vid2realHRI.more » « less
- 
            A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to associal robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this article, we pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots, and datasets.more » « lessFree, publicly-accessible full text available June 30, 2026
- 
            A major goal in robotics is to enable intelligent mobile robots to operate smoothly in shared human-robot environments. One of the most fundamental capabilities in service of this goal is competent navigation in this “social” context. As a result, there has been a recent surge of research on social navigation; and especially as it relates to the handling of conflicts between agents during social navigation. These developments introduce a variety of models and algorithms, however as this research area is inherently interdisciplinary, many of the relevant papers are not comparable and there is no shared standard vocabulary. This survey aims at bridging this gap by introducing such a common language, using it to survey existing work, and highlighting open problems. It starts by defining the boundaries of this survey to a limited, yet highly common type of social navigation—conflict avoidance. Within this proposed scope, this survey introduces a detailed taxonomy of the conflict avoidance components. This survey then maps existing work into this taxonomy, while discussing papers using its framing. Finally, this article proposes some future research directions and open problems that are currently on the frontier of social navigation to aid ongoing and future research.more » « less
- 
            Introduction This dataset was gathered during the Vid2Real online video-based study, which investigates humans’ perception of robots' intelligence in the context of an incidental Human-Robot encounter. The dataset contains participants' questionnaire responses to four video study conditions, namely Baseline, Verbal, Body language, and Body language + Verbal. The videos depict a scenario where a pedestrian incidentally encounters a quadruped robot trying to enter a building. The robot uses verbal commands or body language to try to ask for help from the pedestrian in different study conditions. The differences in the conditions were manipulated using the robot’s verbal and expressive movement functionalities. Dataset Purpose The dataset includes the responses of human subjects about the robots' social intelligence used to validate the hypothesis that robot social intelligence is positively correlated with human compliance in an incidental human-robot encounter context. The video based dataset was also developed to obtain empirical evidence that can be used to design future real-world HRI studies. Dataset Contents Four videos, each corresponding to a study condition. Four sets of Perceived Social Intelligence Scale data. Each set corresponds to one study condition Four sets of compliance likelihood questions, each set include one Likert question and one free-form question One set of Godspeed questionnaire data. One set of Anthropomorphism questionnaire data. A csv file containing the participants demographic data, Likert scale data, and text responses. A data dictionary explaining the meaning of each of the fields in the csv file. Study Conditions There are 4 videos (i.e. study conditions), the video scenarios are as follows. Baseline: The robot walks up to the entrance and waits for the pedestrian to open the door without any additional behaviors. This is also the "control" condition. Verbal: The robot walks up to the entrance, and says ”can you please open the door for me” to the pedestrian while facing the same direction, then waits for the pedestrian to open the door. Body Language: The robot walks up to the entrance, turns its head to look at the pedestrian, then turns its head to face the door, and waits for the pedestrian to open the door. Body Language + Verbal: The robot walks up to the entrance, turns its head to look at the pedestrian, and says ”Can you open the door for me” to the pedestrian, then waits for the pedestrian to open the door. Image showing the Verbal condition. Image showing the Body Language condition. A within-subject design was adopted, and all participants experienced all conditions. The order of the videos, as well as the PSI scales, were randomized. After receiving consent from the participants, they were presented with one video, followed by the PSI questions and the two exploratory questions (compliance likelihood) described above. This set was repeated 4 times, after which the participants would answer their general perceptions of the robot with Godspeed and AMPH questionnaires. Each video was around 20 seconds and the total study time was around 10 minutes. Video as a Study Method A video-based study in human-robot interaction research is a common method for data collection. Videos can easily be distributed via online participant recruiting platforms, and can reach a larger sample than in-person/lab-based studies. Therefore, it is a fast and easy method for data collection for research aiming to obtain empirical evidence. Video Filming The videos were filmed with a first-person point-of-view in order to maximize the alignment of video and real-world settings. The device used for the recording was an iPhone 12 pro, and the videos were shot in 4k 60 fps. For better accessibility, the videos have been converted to lower resolutions. Instruments The questionnaires used in the study include the Perceived Social Intelligence Scale (PSI), Godspeed Questionnaire, and Anthropomorphism Questionnaire (AMPH). In addition to these questionnaires, a 5-point Likert question and a free-text response measuring human compliance were added for the purpose of the video-based study. Participant demographic data was also collected. Questionnaire items are attached as part of this dataset. Human Subjects For the purpose of this project, the participants are recruited through Prolific. Therefore, the participants are users of Prolific. Additionally, they are restricted to people who are currently living in the United States, fluent in English, and have no hearing or visual impairments. No other restrictions were imposed. Among the 385 participants, 194 participants identified as female, and 191 as male, the age ranged from 19 to 75 (M = 38.53, SD = 12.86). Human subjects remained anonymous. Participants were compensated with $4 upon submission approval. This study was reviewed and approved by UT Austin Internal Review Board. Robot The dataset contains data about humans’ perceived social intelligence of a Boston Dynamics’ quadruped robot Spot (Explorer model). The robot was selected because quadruped robots are gradually being adopted to provide services such as delivery, surveillance, and rescue. However, there are still issues or obstacles that robots cannot easily overcome by themselves in which they will have to ask for help from nearby humans. Therefore, it is important to understand how humans react to a quadruped robot that they incidentally encounter. For the purposes of this video-study, the robot operation was semi-autonomous, with the navigation being manually teleoperated by an operator and a few standalone autonomous modules to supplement it. Data Collection The data was collected through Qualtrics, a survey development platform. After the completion of data collection, the data was downloaded as a csv file. Data Quality Control Qualtrics automatically detects bots so any response that is flagged as bots are discarded. All incomplete and duplicate responses were discarded. Data Usage This dataset can be used to conduct a meta-analysis on robots' perceived intelligence. Please note that data is coupled with this study design. Users interested in data reuse will have to assess that this dataset is in line with their study design. Acknowledgement This study was funded through the NSF Award # 2219236GCR: Community-Embedded Robotics: Understanding Sociotechnical Interactions with Long-term Autonomous Deployments.more » « less
- 
            A single mobile service robot may generate hundreds of encounters with pedestrians, yet there is little published data on the factors influencing these incidental human-robot encounters. We report the results of a between-subjects experiment (n=222) testing the impact of robot body language, defined as non-functional modifications to robot movement, upon incidental pedestrian encounters with a quadruped service robot in a real-world setting. We find that canine-inspired body language had a positive influence on participants' perceptions of the robot compared to the robot's stock movement. This effect was visible across all questions of a questionnaire on the perceptions of robots (Godspeed). We argue that body language is a promising and practical design space for improving pedestrian encounters with service robots.more » « less
- 
            Abstract Robotics researchers have been focusing on developing autonomous and human-like intelligent robots that are able to plan, navigate, manipulate objects, and interact with humans in both static and dynamic environments. These capabilities, however, are usually developed for direct interactions with people in controlled environments, and evaluated primarily in terms of human safety. Consequently, human-robot interaction (HRI) in scenarios with no intervention of technical personnel is under-explored. However, in the future, robots will be deployed in unstructured and unsupervised environments where they will be expected to work unsupervised on tasks which require direct interaction with humans and may not necessarily be collaborative. Developing such robots requires comparing the effectiveness and efficiency of similar design approaches and techniques. Yet, issues regarding the reproducibility of results, comparing different approaches between research groups, and creating challenging milestones to measure performance and development over time make this difficult. Here we discuss the international robotics competition called RoboCup as a benchmark for the progress and open challenges in AI and robotics development. The long term goal of RoboCup is developing a robot soccer team that can win against the world’s best human soccer team by 2050. We selected RoboCup because it requires robots to be able to play with and against humans in unstructured environments, such as uneven fields and natural lighting conditions, and it challenges the known accepted dynamics in HRI. Considering the current state of robotics technology, RoboCup’s goal opens up several open research questions to be addressed by roboticists. In this paper, we (a) summarise the current challenges in robotics by using RoboCup development as an evaluation metric, (b) discuss the state-of-the-art approaches to these challenges and how they currently apply to RoboCup, and (c) present a path for future development in the given areas to meet RoboCup’s goal of having robots play soccer against and with humans by 2050.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
