skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hartman, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crop production is among the most extensive human activities on the planet – with critical importance for global food security, land use, environmental burden, and climate. Yet despite the key role that croplands play in global land use and Earth systems, there remains little understanding of how spatial patterns of global crop cultivation have recently evolved and which crops have contributed most to these changes. Here we construct a new data library of subnational crop-specific irrigated and rainfed harvested area statistics and combine it with global gridded land cover products to develop a global gridded (5-arcminute) irrigated and rainfed cropped area (MIRCA-OS) dataset for the years 2000 to 2015 for 23 crop classes. These global data products support critical insights into the spatially detailed patterns of irrigated and rainfed cropland change since the start of the century and provide an improved foundation for a wide array of global assessments spanning agriculture, water resource management, land use change, climate impact, and sustainable development. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Soil salinization is a global phenomenon that affects large tracts of arid farmland worldwide. It contributes to the loss of soil fertility, declining yields, and – in the most severe cases – land unsuitability for cultivation. Irrigation water applications are both the main cause of and the solution to, anthropogenic (or ‘secondary’) salinization because salt typically enters the soil column as dissolved in irrigation water and leaves it through excess water applications (e.g., leaching). Excess leaching, which places additional water costs in areas affected by water scarcity, can be achieved with different irrigation techniques and practices. Here, by complementing a process-based crop water model with a salt balance of the shallow soil, we investigate the tradeoff between root zone salinization and water conservation to limit withdrawals from the water source. We evaluate how such a tradeoff is achieved under different irrigation technology and excess leaching practices. Considering as a case study the cultivation of tomatoes in Egypt, we find that drip and furrow irrigation allows for better control of salt accumulation, thus preventing crop exposure to salt stress. Drip irrigation achieves this goal with minimal water applications because it maintains the soil wetter. Thus, the (rare) rainfall events find more suitable conditions to drain the excess moisture. Conversely, by using more irrigation water (and ‘less efficiently’), furrow irrigation allows for higher rates of soil drainage and salt leaching. The irrigation schedule typically adopted with sprinkler irrigation allows for soil drying, thus limiting the ability of rainfall events to drain the soil and leach its salts. Collectively, these results highlight the key role of irrigation technology and practices in the management of secondary salinity in dryland agriculture. Specifically, there is a tradeoff between minimizing water use and preventing salt accumulation in the root zone. Drip irrigation exhibits the co-benefit of achieving both goals, while furrow irrigation limits soil salinity at the cost of requiring greater volumes of applied irrigation water. 
    more » « less
  3. Food production data — such as crop, livestock, aquaculture and fisheries statistics — are critical to achieving multiple sustainable development goals. However, the lack of reliable, regularly collected, accessible, usable and spatially disaggregated statistics limits an accurate picture of the state of food production in many countries and prevents the implementation of effective food system interventions. In this Review, we take stock of national and international food production data to understand its availability and limitations. Across databases, there is substantial global variation in data timeliness, granularity (both spatially and by food category) and transparency. Data scarcity challenges are most pronounced for livestock and aquatic food production. These challenges are largely concentrated in Central America, the Middle East and Africa owing to a combination of inconsistent census implementation and a global reliance on self-reporting. Because data scarcity is the result of technical, institutional and political obstacles, solutions must include technological and policy innovations. Fusing traditional and emerging data-gathering techniques with coordinated governance and dedicated long-term financing will be key to overcoming current obstacles to sustained, up-to-date and accurate food production data collection, foundational in promoting and monitoring progress towards healthier and more sustainable food systems worldwide. 
    more » « less
  4. Abstract Agricultural transformations have significantly contributed to the global market’s year-round supply of capital-intensive greenhouse-grown crops. For instance, berry production in México is increasingly relying on greenhouse systems to meet the growing demand of international markets, particularly in the USA. It is still unclear to what extent these transformations are related to land tenure, as data on greenhouse distribution often do not exist, are incomplete, or lack spatial resolution. This paper presents a support vector machine learning algorithm tool to map greenhouse expansion using satellite images. The tool is applied to the major berry-growing region of Michoacán, México. Here agricultural areas are transforming to satisfy foreign demand for berries, altering local land and water resource use patterns. We use this tool and a unique land tenure dataset to investigate (a) the spatially explicit extent to which high-input commercial agriculture (mainly the production of berries) has expanded in this region since 1989; and (b) the extent to which smallholder ( ejidal ) land has been incorporated into the highly capitalized agro-export sector. We combine a national dataset on ejidal land (which includes both communal and parcel land) with geospatial agricultural data to quantify the land-use changes in six municipalities in the berry-growing region of Michoacán between 1989 and 2021. We find that the development of the greenhouse berry boom can be quantified and shown with spatially-explicit detail, growing from zero to over 9,500 ha over the period, using almost one-quarter of all regional agricultural land in 2020. We further find that the capital-intensive market-oriented berry industry has been widely integrated into smallholder ejidal lands, so much so that over half of greenhouses are found there. 
    more » « less