skip to main content


Title: Mapping the expansion of berry greenhouses onto Michoacán’s ejido lands, México
Abstract Agricultural transformations have significantly contributed to the global market’s year-round supply of capital-intensive greenhouse-grown crops. For instance, berry production in México is increasingly relying on greenhouse systems to meet the growing demand of international markets, particularly in the USA. It is still unclear to what extent these transformations are related to land tenure, as data on greenhouse distribution often do not exist, are incomplete, or lack spatial resolution. This paper presents a support vector machine learning algorithm tool to map greenhouse expansion using satellite images. The tool is applied to the major berry-growing region of Michoacán, México. Here agricultural areas are transforming to satisfy foreign demand for berries, altering local land and water resource use patterns. We use this tool and a unique land tenure dataset to investigate (a) the spatially explicit extent to which high-input commercial agriculture (mainly the production of berries) has expanded in this region since 1989; and (b) the extent to which smallholder ( ejidal ) land has been incorporated into the highly capitalized agro-export sector. We combine a national dataset on ejidal land (which includes both communal and parcel land) with geospatial agricultural data to quantify the land-use changes in six municipalities in the berry-growing region of Michoacán between 1989 and 2021. We find that the development of the greenhouse berry boom can be quantified and shown with spatially-explicit detail, growing from zero to over 9,500 ha over the period, using almost one-quarter of all regional agricultural land in 2020. We further find that the capital-intensive market-oriented berry industry has been widely integrated into smallholder ejidal lands, so much so that over half of greenhouses are found there.  more » « less
Award ID(s):
2125913
PAR ID:
10434222
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
11
ISSN:
1748-9326
Page Range / eLocation ID:
115004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Rural life in México has changed drastically over the past several decades in the wake of structural reforms in the 1980s and the North American Free Trade Agreement (NAFTA) implemented in 1994. Researchers predicted dire consequences for smallholder farmers following trade liberalization and in certain respects the prophecies have been fulfilled. Indeed, many regions experienced significant out-migration as smallholders, unable to compete with global maize imports without price subsidies, sold or abandoned their lands, making way for the expansion of industrial agriculture into forests, secondary vegetation and primary crops. Nevertheless, many smallholders have adapted to the new economic environment with farming systems that manage risk by diversifying portfolios to incorporate commercialized maize and livestock production. This article examines the evolution of smallholder farming systems since the mid 1980s, when the impact of neoliberal reforms emerged, using data collected from field research on 130 smallholder farms in the Pátzcuaro Lake Watershed (PLW) in the State of Michoacán. Farmers in the PLW have been characterized as traditional peasant farmers, planting crops for subsistence, including a diverse array of domestic maize varieties and practicing limited animal husbandry with chickens, turkeys, pigs, an oxen and a cow or two for milk. But the results presented in this article show that the traditional peasant farming systems in the region have changed substantially to a highly diversified agriculture-cattle-forest system. Most notable changes include the use of fertilizers and pesticides; and the increase in livestock herd and reorientation to beef production. The results demonstrate the resilience of smallholder farmers, while at the same time raising potential concern that increased reliance on livestock and beef production specialization, might lead to shifts in farming systems that replace domestic maize varieties with hybrid corn used primarily for animal feed and thereby leaving vulnerable the genetic reservoir of traditional maize landraces. 
    more » « less
  2. Abstract

    This article explores the expansion of informal property rights documents through the case of chiefs’ titles in Zambia. Entrepreneurial chiefs have created written land rights for citizens on customary land in the form of letters, signed maps, and certificates. These documents are an alternative to state land titling that allows chiefs to maintain their control over land. However, chiefs’ titles are extra-legal: they are enforced by the same traditional leaders who govern unwritten customary rights, raising doubt about whether written land rights can strengthen citizens’ land claims without changing the existing power structures. Evidence from 121 interviews with chiefs, bureaucrats, and smallholder farmers and a survey of over 5,500 citizens shows that, despite their flaws, chiefs’ titles do increase citizens’ perceptions of tenure security. This suggests that informal property rights documents can be a powerful tool in a citizen’s arsenal. Further, these findings illustrate a process of adaptation and change within customary land institutions.

     
    more » « less
  3. Abstract

    Vegetation phenology is a key control on water, energy, and carbon fluxes in terrestrial ecosystems. Because vegetation canopies are heterogeneous, spatially explicit information related to seasonality in vegetation activity provides valuable information for studies that use eddy covariance measurements to study ecosystem function and land-atmosphere interactions. Here we present a land surface phenology (LSP) dataset derived at 3 m spatial resolution from PlanetScope imagery across a range of plant functional types and climates in North America. The dataset provides spatially explicit information related to the timing of phenophase changes such as the start, peak, and end of vegetation activity, along with vegetation index metrics and associated quality assurance flags for the growing seasons of 2017–2021 for 10 × 10 km windows centred over 104 eddy covariance towers at AmeriFlux and National Ecological Observatory Network (NEON) sites. These LSP data can be used to analyse processes controlling the seasonality of ecosystem-scale carbon, water, and energy fluxes, to evaluate predictions from land surface models, and to assess satellite-based LSP products.

     
    more » « less
  4. Abstract

    Meeting ambitious climate targets will require deploying the full suite of mitigation options, including those that indirectly reduce greenhouse-gas (GHG) emissions. Healthy diets have sustainability co-benefits by directly reducing livestock emissions as well as indirectly reducing land use emissions. Increased crop productivity could indirectly avoid emissions by reducing cropland area. However, there is disagreement on the sustainability of proposed healthy U.S. diets and a lack of clarity on how long-term sustainability benefits may change in response to shifts in the livestock sector. Here, we explore the GHG emissions impacts of seven scenarios that vary U.S. crop yields and healthier diets in the U.S. and overseas. We also examine how impacts vary across assumptions of future ruminant livestock productivity and ruminant stocking density in the U.S. We employ two complementary land use models—the US FABLE Calculator, an agricultural and forestry sector accounting model with high agricultural commodity representation, and GLOBIOM, a spatially explicit partial equilibrium optimization model for global land use systems. Results suggest that healthier U.S. diets that follow the Dietary Guidelines for Americans reduce agricultural and land use greenhouse gas emissions by 25–57% (approx 120–310 MtCO2e/y) and pastureland area by 28–38%. The potential emissions and land sparing benefits of U.S. agricultural productivity growth are modest within the U.S. due to the increasing comparative advantage of U.S. crops. Our findings suggest that healthy U.S. diets can significantly contribute toward meeting U.S. long-term climate goals for the land use sectors.

     
    more » « less
  5. Abstract The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which steeply decreased between 1985 and 2018 throughout Brazil, is essential for estimating the global carbon balance and quantifying the provision of ecosystem services. To know the long-term increment, extent, and age of secondary forests is crucial; however, these variables are yet poorly quantified. Here we developed a 30-m spatial resolution dataset of the annual increment, extent, and age of secondary forests for Brazil over the 1986–2018 period. Land-use and land-cover maps from MapBiomas Project (Collection 4.1) were used as input data for our algorithm, implemented in the Google Earth Engine platform. This dataset provides critical spatially explicit information for supporting carbon emissions reduction, biodiversity, and restoration policies, enabling environmental science applications, territorial planning, and subsidizing environmental law enforcement. 
    more » « less