skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hasan, Syed M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper presents the design, material growth and fabrication of AlGaN laser structures grown by plasma-assisted molecular beam epitaxy. Considering hole transport to be the major challenge, our ultraviolet-A diode laser structures have a compositionally graded transparent tunnel junction, resulting in superior hole injection and a low contact resistance. By optimizing active region thickness, a five-fold improvement in photoluminescence intensity is obtained compared to that of our own non-optimized test structures. The electrical and optical characteristics of processed devices demonstrate only spontaneous emission with a peak wavelength at 354 nm. The devices operate up to a continuous-wave current density of 11.1 kA cm−2at room temperature, which is the highest reported for laser structures grown on AlGaN templates. Additionally, they exhibit a record-low voltage drop of 8.5 V to achieve this current density. 
    more » « less
  2. The development of electrically pumped semiconductor diode lasers emitting at the ultraviolet (UV)-B and -C spectral bands has been an active area of research over the past several years, motivated by a wide range of emerging applications. III-Nitride materials and their alloys, in particular AlGaN, are the material of choice for the development of this ultrashort-wavelength laser technology. Despite significant progress in AlGaN-based light-emitting diodes (LEDs), the technological advancement and innovation in diode lasers at these spectral bands is lagging due to several technical challenges. Here, the authors review the progress of AlGaN electrically-pumped lasers with respect to very recent achievements made by the scientific community. The devices based on both thin films and nanowires demonstrated to date will be discussed in this review. The state-of-the-art growth technologies, such as molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD); and various foreign substrates/templates used for the laser demonstrations will be highlighted. We will also outline technical challenges associated with the laser development, which must be overcome in order to achieve a critical technological breakthrough and fully realize the potential of these lasers. 
    more » « less