Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT G0.253+0.016, commonly referred to as ‘the Brick’ and located within the Central Molecular Zone, is one of the densest (≈103–4 cm−3) molecular clouds in the Galaxy to lack signatures of widespread star formation. We set out to constrain the origins of an arc-shaped molecular line emission feature located within the cloud. We determine that the arc, centred on $\lbrace l_{0},b_{0}\rbrace =\lbrace 0{_{.}^{\circ}} 248,\, 0{_{.}^{\circ}} 018\rbrace$, has a radius of 1.3 pc and kinematics indicative of the presence of a shell expanding at $5.2^{+2.7}_{-1.9}$ $\mathrm{\, km\, s}^{-1}$. Extended radio continuum emission fills the arc cavity and recombination line emission peaks at a similarmore »Free, publicly-accessible full text available December 17, 2022
-
The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1-4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10-12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321,more »
-
ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $\rm {M_J}$ (43.9 ± 7.3 $\, M_{\rm \oplus}$), a radius of RP = 0.639 ± 0.013 $\rm {R_J}$ (7.16 ± 0.15 $\, \mathrm{ R}_{\rm \oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$ $\rm {days}$. TOI-257b orbits a bright (V = 7.612 mag)more »