skip to main content

Search for: All records

Creators/Authors contains: "Henning, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The nature of the gas in CO-rich debris discs remains poorly understood, as it could either be a remnant from the earlier Class II phase or of secondary origin, driven by the destruction of icy planetesimals. The aim of this paper was to elucidate the origin of the gas content in the debris discs via various simple molecules that are often detected in the less-evolved Class II discs. We present millimetre molecular line observations of nine circumstellar discs around A-type stars: four CO-rich debris discs (HD 21997, HD 121617, HD 131488, HD 131835) and five old Herbig Ae protoplanetary discs (HD 139614, HD 141569, HD 142666, HD 145718, HD 100453). The sources were observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in Bands 5 and 6 with 1–2 arcsec resolution. The Herbig Ae discs are detected in the CO isotopologues, CN, HCN, HCO+, C2H, and CS lines. In contrast, only CO isotopologues are detected in the debris discs, showing a similar amount of CO to that found in the Herbig Ae protoplanetary discs. Using chemical and radiative transfer modelling, we show that the abundances of molecules other than CO in debris discs are expected to be very low. We consider multiple sets ofmore »initial elemental abundances with various degrees of H2 depletion. We find that the HCO+ lines should be the second brightest after the CO lines, and that their intensities strongly depend on the overall CO/H2 ratio of the gas. However, even in the ISM-like scenario, the simulated HCO+ emission remains weak as required by our non-detections.

    « less
  2. Abstract Multiwavelength high-resolution imaging of protoplanetary disks has revealed the presence of multiple, varied substructures in their dust and gas components, which might be signposts of young, forming planetary systems. AB Aurigae bears an emblematic (pre)transitional disk showing spiral structures observed in the inner cavity of the disk in both the submillimeter (Atacama Large Millimeter/submillimeter Array (ALMA); 1.3 mm, 12 CO) and near-infrared (Spectro-polarimetric High-contrast Exoplanet Research; 1.5–2.5 μ m) wavelengths, which have been claimed to arise from dynamical interactions with a massive companion. In this work, we present new deep K s (2.16 μ m) and L ′ (3.7 μ m) band images of AB Aurigae obtained with the L/M-band Infrared Camera on the Large Binocular Telescope, aimed for the detection of both planetary companions and extended disk structures. No point source is recovered, in particular at the outer regions of the disk, where a putative candidate ( ρ = 0.″681, PA = 7.°6) had been previously claimed. The nature of a second innermost planet candidate ( ρ = 0.″16, PA = 203.°9) cannot be investigated by the new data. We are able to derive 5 σ detection limits in both magnitude and mass for the system, going frommore »14 M Jup at 0.″3 (49 au) down to 3–4 M Jup at 0.″6 (98 au) and beyond, based on the ATMO 2020 evolutionary models. We detect the inner spiral structures (<0.″5) resolved in both CO and polarimetric H -band observations. We also recover the ring structure of the system at larger separation (0.″5–0.″7) showing a clear southeast/northwest asymmetry. This structure, observed for the first time at L ′ band, remains interior to the dust cavity seen at ALMA, suggesting an efficient dust trapping mechanism at play in the disk.« less
  3. ABSTRACT

    G0.253+0.016, commonly referred to as ‘the Brick’ and located within the Central Molecular Zone, is one of the densest (≈103–4 cm−3) molecular clouds in the Galaxy to lack signatures of widespread star formation. We set out to constrain the origins of an arc-shaped molecular line emission feature located within the cloud. We determine that the arc, centred on $\lbrace l_{0},b_{0}\rbrace =\lbrace 0{_{.}^{\circ}} 248,\, 0{_{.}^{\circ}} 018\rbrace$, has a radius of 1.3 pc and kinematics indicative of the presence of a shell expanding at $5.2^{+2.7}_{-1.9}$ $\mathrm{\, km\, s}^{-1}$. Extended radio continuum emission fills the arc cavity and recombination line emission peaks at a similar velocity to the arc, implying that the molecular gas and ionized gas are physically related. The inferred Lyman continuum photon rate is NLyC = 1046.0–1047.9 photons s−1, consistent with a star of spectral type B1-O8.5, corresponding to a mass of ≈12–20 M⊙. We explore two scenarios for the origin of the arc: (i) a partial shell swept up by the wind of an interloper high-mass star and (ii) a partial shell swept up by stellar feedback resulting from in situ star formation. We favour the latter scenario, finding reasonable (factor of a few) agreement between its morphology, dynamics, and energetics and those predicted formore »an expanding bubble driven by the wind from a high-mass star. The immediate implication is that G0.253+0.016 may not be as quiescent as is commonly accepted. We speculate that the cloud may have produced a ≲103 M⊙ star cluster ≳0.4 Myr ago, and demonstrate that the high-extinction and stellar crowding observed towards G0.253+0.016 may help to obscure such a star cluster from detection.

    « less
  4. The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1-4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10-12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10-1-103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3-400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled bymore »nested, interdependent flows of matter covering many orders of magnitude in spatial scale.« less