skip to main content

Search for: All records

Creators/Authors contains: "Henry, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This Research-to-Practice Full Paper describes the implementation of integrated reflective activities in two computer engineering courses. Reflective activities contribute to student learning and professional development. Instructional team members have been examining the need and opportunities to deepen learning by integrating reflective activities into problem-solving experiences. We implemented reflective activities using a coordinated framework for a modified Kolbian cycle. The framework consists of reflection-for-action, reflection-in-action, reflection-on-action, and composted reflections. Reflection-for-action takes place before the experience and involves thinking about and planning future actions. Reflection-in-action takes place during the experience while actively problem-solving. Reflection-on-action takes place after the problem-solving experience. Composting involves revisiting past experiences and reflections to inform future planning. We describe the reflective activities in the context of the coordinated framework, including strategies to support reflection and increase the likelihood of engagement and success. We conclude with an analysis of the activities using the CPREE framework for reflection pathways.
    Free, publicly-accessible full text available October 13, 2022
  2. Abstract

    Two-thirds of the Earth is covered by mid-ocean ridge basalts, which form along a network of divergent plate margins. Basalts along these margins display a chemical diversity, which is consequent to a complex interplay of partial mantle melting in the upper mantle and magmatic differentiation processes in lower crustal levels. Igneous differentiation (crystal fractionation, partial melting) and source heterogeneity, in general, are key drivers creating variable chemistry in mid-ocean ridge basalts. This variability is reflected in iron isotope systematics (expressed as δ57Fe), showing a total range of 0.2 ‰ from δ57Fe =  + 0.05 to + 0.25 ‰. Respective contributions of source heterogeneity and magma differentiation leading to this diversity, however, remain elusive. This study investigates the iron isotope systematics in basalts from the ultraslow spreading Gakkel Ridge in the Arctic Ocean and compares them to existing data from the fast spreading East Pacific Rise ridge. Results indicate that Gakkel lavas are driven to heavier iron isotope compositions through partial melting processes, whereas effects of igneous differentiation are minor. This is in stark contrast to fast spreading ridges showing reversed effects of near negligible partial melting effects followed by large isotope fractionation along the liquid line of descent. Gakkel lavas further reveal mantle heterogeneitymore »that is superimposed on the igneous differentiation effects, showing that upper mantle Fe isotope heterogeneity can be transmitted into erupting basalts in the absence of homogenisation processes in sub-oceanic magma chambers.

    « less
  3. Abstract The architecture of lower oceanic crust at slow- and ultraslow-spreading ridge is diverse, yet the mechanisms that produce this diversity are not well understood. Particularly, the 660-km2 gabbroic massif at Atlantis Bank (Southwest Indian Ridge) exhibits significant compositional zonation, representing a high magma supply end member for accretion of the lower ocean crust at slow and ultraslow-spreading ridges. We present the petrographic and geochemical data of olivine gabbros from the 809-meter IODP Hole U1473A at Atlantis Bank gabbroic massif. Structurally, the upper portion of U1473A consists of a ∼600-meter shear zone; below this, the hole is relatively undeformed, with several minor shear zones. Olivine gabbros away from the shear zones have mineral trace element compositions indicative of high-temperature reaction with an oxide-undersaturated melt. By contrast, olivine gabbros within shear zones display petrographic and chemical features indicative of reaction with a relatively low-temperature, oxide-saturated melt. These features indicate an early stage of primitive to moderately evolved melt migration, followed by deformation-driven transport of highly evolved Fe-Ti-rich melts to high levels in this gabbroic massif. The close relationship between shear zones and the reaction with oxide-saturated melts suggests that syn-magmatic shear zones provide a conduit for late-stage, Fe-Ti-rich melt transport throughmore »Atlantis Bank lower crust. This process is critical to generate the compositional zonation observed. Thus, the degree of syn-magmatic deformation, which is fundamentally related to magma supply, plays a dominant role in developing the diversity of lower ocean crust observed at slow- and ultraslow-spreading ridges.« less
  4. Abstract During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement—an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness tomore »fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration.« less
  5. Abstract Mantle source heterogeneity and magmatic processes have been widely studied beneath most parts of the Southwest Indian Ridge (SWIR). But less is known from the newly recovered mid-ocean ridge basalts from the Dragon Bone Amagmatic Segment (53°E, SWIR) and the adjacent magmatically robust Dragon Flag Segment. Fresh basalt glasses from the Dragon Bone Segment are clearly more enriched in isotopic composition than the adjacent Dragon Flag basalts, but the trace element ratios of the Dragon Flag basalts are more extreme compared with average mid-ocean ridge basalts (MORB) than the Dragon Bone basalts. Their geochemical differences can be explained only by source differences rather than by variations in degree of melting of a roughly similar source. The Dragon Flag basalts are influenced by an arc-like mantle component as evidenced by enrichment in fluid-mobile over fluid-immobile elements. However, the sub-ridge mantle at the Dragon Flag Segment is depleted in melt component compared with a normal MORB source owing to previous melting in the subarc. This fluid-metasomatized, subarc depleted mantle is entrained beneath the Dragon Flag Segment. In comparison, for the Dragon Bone axial basalts, their Pb isotopic compositions and their slight enrichment in Ba, Nb, Ta, K, La, Sr and Zrmore »and depletion in Pb and Ti concentrations show resemblance to the Ejeda–Bekily dikes of Madagascar. Also, Dragon Bone Sr and Nd isotopic compositions together with the Ce/Pb, La/Nb and La/Th ratios can be modeled by mixing the most isotopically depleted Dragon Flag basalts with a composition within the range of the Ejeda–Bekily dikes. It is therefore proposed that the Dragon Bone axial basalts, similar to the Ejeda–Bekily dikes, are sourced from subcontinental lithospheric Archean mantle beneath Gondwana, pulled from beneath the Madagascar Plateau. The recycling of the residual subarc mantle and the subcontinental lithospheric mantle could be related to either the breakup of Gondwana or the formation and accretion of Neoproterozoic island arc terranes during the collapse of the Mozambique Ocean, and is now present beneath the ridge.« less