skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Henson, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The efficacy of leadership training on undergraduate engineering and technology students before and during the COVID-19 pandemic was examined. A leadership development program (LDP) at Southern Illinois University Carbondale (SIUC) emphasized active involvement and inter-personal relationship among participants to build a community of STEM leaders. The LDP recruited academically talented and economically disadvantaged STEM majors from partner community colleges and trained them as leaders. The directors framed the LPD within Social Interdependence Theory to promote and enable students to cooperatively learn to lead themselves, build leadership skills, and participate in leadership teams. The COVID-19 pandemic imposed extra challenges on implementing this model when teaching and learning switched to an online modality. Program organizers followed the program tenets and “Challenged the Process” to find innovative ways to maintain connections among and with students. Working together, students learned to apply their leadership training by organizing and completing service projects. Additionally, students practiced leadership skills within registered student organizations. Through dedication by students and coaches, the program exceeded expectations through the pandemic. The LDP continued with 100% graduation and 100% retention rates. Students in the LDP continued to show large, statistically significant gains in Leadership Self-efficacy, Motivation to Lead, and Grit compared to peers. This model of leadership development conceptually framed within the Social Interdependence Theory was effective. The LDP at SIUC is an exemplary program and could be a model for engineering leadership programs to follow. 
    more » « less
  2. An engineering leadership development program (LDP) at a major midwestern university has received NSF S STEM grant support for the past 10 years and has achieved higher and faster time to graduation rate for engineering transfer students in a peer comparison study ( DeRuntz et.al 2019) ( DeRuntz, et. al 2017) (Palmer, et. al. 2016) ( Kowalchuk , et. al 2013). Through the award of a Track 2 S STEM three years ago, the LDP has now expanded into the STEM majors at the university and has made an important discovery regarding the evolution of Leadership Knowledge among some of the STEM leaders. The participants in the LDP program have shown statistically significant changes on Leadership Self Efficacy Survey ( Bobbio , Manganelli , 2009) and the Motivation to Lead Survey (Chan, Drasgow, 2001) when compared to their peers. We noticed an apparent regression in the Leadership Knowledge data scores. However, upon further examination there appeared to be a response shift bias in these results ( Rohs 1999). In other words, participants rated themselves higher on the pre test and then lower on the post test; even though they had made significant gains as measured in the other program data collected by the external evaluator. This conclusion is further confirmed by interactions and observations recorded by the program Co PIs, coordinator, coaches, and senior leadership. 
    more » « less
  3. In this study, the authors explored prevalent leadership styles found in industry from an engineering student’s internship experiences. Over four years of internships, observations and interview responses were recorded to address three questions: What is the dominant industrial leadership style? What is the dominant leadership style in the broader engineering sector? What is the dominant leadership style entry-level engineers should know to be successful? Reflections on personal experiences within the engineering industry suggest an ideal leadership style that an entry-level engineer or a similar technical individual can utilize. Previous research on leadership and success formed a basis for claims as to which leadership techniques can lead to success for an entry-level engineer. Further, this study builds upon prior research on the correlations between leadership skills taught in college and the resulting success beyond the classroom. Leadership styles are ranked in order of their utilization in industry with a corresponding value for entry-level engineers. They are: pacesetting, authoritative, democratic, coaching, and delegating. From the study, the authors concluded by suggesting that there is a correlation between knowledge in leadership for both subjective and objective success of entry-level engineers. Ideally, every engineer should be taught a multitude of techniques, and recommendations are that engineers should strive to learn many leadership styles, whether they intend to hold a position of leadership or not. 
    more » « less