Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Atherosclerosis is a prominent cause of coronary artery disease and broader cardiovascular diseases, the leading cause of death worldwide. Angioplasty and stenting is a common treatment, but in-stent restenosis, where the artery re-narrows, is a frequent complication. Restenosis is detected through invasive procedures and is not currently monitored frequently for patients. Here, we report an implantable vascular bioelectronic device using a newly developed miniaturized strain sensor via microneedle printing methods. A capillary-based printing system achieves high-resolution patterning of a soft, capacitive strain sensor. Ink and printing parameters are evaluated to create a fully printed sensor, while sensor design and sensing mechanism are studied to enhance sensitivity and minimize sensor size. The sensor is integrated with a wireless vascular stent, offering a biocompatible, battery-free, wireless monitoring system compatible with conventional catheterization procedures. The vascular sensing system is demonstrated in an artery model for monitoring restenosis progression. Collectively, the artery implantable bioelectronic system shows the potential for wireless, real-time monitoring of various cardiovascular diseases and stent-integrated sensing/treatments.more » « less
-
Abstract Liquid‐metal embedded elastomers (LMEEs) have been demonstrated to show a variety of excellent properties, including high toughness, dielectric constant, and thermal conductivity, with applications across soft electronics and robotics. However, within this scope of use cases, operation in extreme environments – such as high‐temperature conditions – may lead to material degradation. While prior works highlight the functionality of LMEEs, there is limited insight on the thermal stability of these soft materials and how the effects of liquid metal (LM) inclusions depend on temperature. Here, the effects on thermal stability, including mechanical and electrical properties, of LMEEs are introduced. Effects are characterized for both fluoroelastomer and other elastomer‐based composites at temperature exposures up to 325 °C, where it is shown that embedding LM can offer improvements in thermo‐mechanical stability. Compared to elastomer like silicone rubber that has been previously used for LMEEs, a fluoroelastomer matrix offers a higher dielectric constant and significant improvement in thermo‐mechanical stability without sacrificing room temperature properties, such as thermal conductivity and modulus. Fluoroelastomer‐LM composites offer a promising soft, multi‐functional material for high‐temperature applications, which is demonstrated here with a printed, soft heat sink and an endoscopic sensor capable of wireless sensing of high temperatures.more » « less
-
Abstract Traditional intracranial pressure (ICP) monitoring methods, using intraventricular catheters, face significant limitations, including high invasiveness, discrete data, calibration complexities, and drift issues, which hinder long‐term and stable monitoring. Here, a non‐surgical, in‐stent membrane bioelectronic system is presented for continuous and reliable ICP monitoring. This platform integrates a capacitive thin‐film sensor with a stent, enabling precise real‐time detection of pressure fluctuations directly within the dural venous sinus without requiring skull penetration or frequent recalibration. The sensor demonstrates a high sensitivity of 0.052%/mmHg and a broad, readable pressure range of 3–30 mmHg while maintaining calibration‐free and drift‐free performance. A series of in vivo studies highlight the system's superior sensitivity, rapid sampling rate, and long‐term stability compared to conventional microcatheters. Statistical analyses reveal a strong agreement between the device and clinical reference, underscoring its potential to revolutionize ICP monitoring. These advancements pave the way for broader clinical applications, minimizing complications and improving patient outcomes in neurocritical care.more » « less
-
Abstract The development of wireless implantable sensors and integrated systems, enabled by advances in flexible and stretchable electronics technologies, is emerging to advance human health monitoring, diagnosis, and treatment. Progress in material and fabrication strategies allows for implantable electronics for unobtrusive monitoring via seamlessly interfacing with tissues and wirelessly communicating. Combining new nanomaterials and customizable printing processes offers unique possibilities for high‐performance implantable electronics. Here, this report summarizes the recent progress and advances in nanomaterials and printing technologies to develop wireless implantable sensors and electronics. Advances in materials and printing processes are reviewed with a focus on challenges in implantable applications. Demonstrations of wireless implantable electronics and advantages based on these technologies are discussed. Lastly, existing challenges and future directions of nanomaterials and printing are described.more » « less
-
Abstract Recent developments of micro‐sensors and flexible electronics allow for the manufacturing of health monitoring devices, including electrocardiogram (ECG) detection systems for inpatient monitoring and ambulatory health diagnosis, by mounting the device on the chest. Although some commercial devices in reported articles show examples of a portable recording of ECG, they lose valuable data due to significant motion artifacts. Here, a new class of strain‐isolating materials, hybrid interfacial physics, and soft material packaging for a strain‐isolated, wearable soft bioelectronic system (SIS) is reported. The fundamental mechanism of sensor‐embedded strain isolation is defined through a combination of analytical and computational studies and validated by dynamic experiments. Comprehensive research of hard‐soft material integration and isolation mechanics provides critical design features to minimize motion artifacts that can occur during both mild and excessive daily activities. A wireless, fully integrated SIS that incorporates a breathable, perforated membrane can measure real‐time, continuous physiological data, including high‐quality ECG, heart rate, respiratory rate, and activities. In vivo demonstration with multiple subjects and simultaneous comparison with commercial devices captures the SIS's outstanding performance, offering real‐world, continuous monitoring of the critical physiological signals with no data loss over eight consecutive hours in daily life, even with exaggerated body movements.more » « less
An official website of the United States government
