skip to main content


Search for: All records

Creators/Authors contains: "Hill, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    During February 2023, a total of 32 individual distributed acoustic sensing (DAS) systems acted jointly as a global seismic monitoring network. The aim of this Global DAS Month campaign was to coordinate a diverse network of organizations, instruments, and file formats to gain knowledge and move toward the next generation of earthquake monitoring networks. During this campaign, 156 earthquakes of magnitude 5 or larger were reported by the U.S. Geological Survey and contributors shared data for 60 min after each event’s origin time. Participating systems represent a variety of manufacturers, a range of recording parameters, and varying cable emplacement settings (e.g., shallow burial, borehole, subaqueous, and dark fiber). Monitored cable lengths vary between 152 and 120,129 m, with channel spacing between 1 and 49 m. The data has a total size of 6.8 TB, and are available for free download. Organizing and executing the Global DAS Month has produced a unique dataset for further exploration and highlighted areas of further development for the seismological community to address.

     
    more » « less
    Free, publicly-accessible full text available November 27, 2024
  3. Abstract

    Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter inDrosophila melanogasterembryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.

     
    more » « less
  4. null (Ed.)