skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hirschmann, Michaela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use JWST Near-Infrared Spectrograph observations from the Cosmic Evolution Early Release survey, GLASS-JWST ERS (GLASS), and JWST Advanced Deep Extragalactic Survey to measure rest-frame optical emission-line ratios of 89 galaxies atz > 4. The stacked spectra of galaxies with and without a broad-line feature reveal a difference in the [Oiii]λ4364 and Hγratios. This motivated our investigation of the [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram. We define two active galactic nucleus (AGN)/star formation (SF) classification lines based on 21,048 Sloan Digital Sky Survey galaxies atz ∼ 0. After applying a redshift correction to the AGN/SF lines, we find 69.2% of broad-line active galactic nuclei (BLAGN) continue to land in the AGN region of the diagnostic, largely due to the [Neiii]/[Oii] ratio. However, 33.0% of non-BLAGN land is in the AGN region as well. The [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram does not robustly separate BLAGN from non-broad-line galaxies atz> 4. This could be due to star-forming galaxies having harder ionization, or these galaxies contain a narrow line AGN, which are not accounted for. We further inspected galaxies without broad emission lines in each region of [Oiii]λ4364/Hγversus [Neiii]/[Oii] diagram and found that they have slightly stronger Ciii]λ1908 fluxes and equivalent width when landing in the BLAGN region. However, the cause of this higher ionization is unclear and may be revealed by observing UV lines. 
    more » « less
    Free, publicly-accessible full text available November 20, 2026
  2. JWST spectroscopy has discovered a population ofz ≳ 3.5 galaxies with broad Balmer emission lines and narrow forbidden lines that are consistent with hosting active galactic nuclei (AGN). Many of these systems, now known as “little red dots,” are compact and have unique colors that are very red in the optical/near-infrared and blue in the ultraviolet. The relative contribution of galaxy starlight and AGN to these systems remains uncertain, especially for the galaxies with unusual blue+red spectral energy distributions. In this work, we use Balmer decrements to measure the independent dust attenuation of the broad and narrow emission-line components of a sample of 29 broad-line AGN identified from three public JWST spectroscopy surveys: CEERS, JADES, and RUBIES. Stacking the narrow components from the spectra of 25 sources with broad Hαand no broad Hβresults in a median narrow Hα/Hβ= 2.4 7 0.05 + 0.05 (consistent withAv = 0) and broad Hα/Hβ>8.85 (Av > 3.63). The narrow and broad Balmer decrements imply little to no attenuation of the narrow emission lines, which are consistent with being powered by star formation and located on larger physical scales. Meanwhile, the lower limit in the broad Hα/Hβdecrement, with broad Hβundetected in the stacked spectrum of 25 broad HαAGN, implies significant dust attenuation of the broad-line emitting region that is presumably associated with the central AGN. Our results indicate that these systems, on average, are consistent with heavily dust-attenuated AGN powering the red parts of their SED, while their blue UV emission is powered by unattenuated star formation in the host galaxy. 
    more » « less
    Free, publicly-accessible full text available June 17, 2026
  3. Abstract We present rest-frame optical spectra from Keck/MOSFIRE and Keck/NIRES of 16 candidate ultramassive galaxies targeted as part of the Massive Ancient Galaxies atz> 3 Near-Infrared Survey (MAGAZ3NE). These candidates were selected to have photometric redshifts 3 ≲zphot<4, photometric stellar masses log ( M / M ) > 11.7, and well-sampled photometric spectral energy distributions (SEDs) from the UltraVISTA and VIDEO surveys. In contrast to previous spectroscopic observations of blue star-forming and poststarburst ultramassive galaxies, candidates in this sample have very red SEDs implying significant dust attenuation, old stellar ages, and/or active galactic nuclei (AGN). Of these galaxies, eight are revealed to be heavily dust-obscured 2.0 <z< 2.7 galaxies with strong emission lines, some showing broad features indicative of AGN, three are Type I AGN hosts atz> 3, one is az∼ 1.2 dusty galaxy, and four galaxies do not have a confirmed spectroscopic redshift. In fact, none of the sample has ∣zspec−zphot∣ < 0.5, suggesting difficulties for photometric redshift programs in fitting similarly red SEDs. The prevalence of these red interloper galaxies suggests that the number densities of high-mass galaxies are overestimated atz≳ 3 in large photometric surveys, helping to resolve the “impossibly early galaxy problem” and leading to much better agreement with cosmological galaxy simulations. A more complete spectroscopic survey of ultramassive galaxies is required to pin down the uncertainties on their number densities in the early Universe. 
    more » « less
  4. Abstract Many quiescent galaxies discovered in the early Universe by JWST raise fundamental questions on when and how these galaxies became and stayed quenched. Making use of the latest version of the semianalytic model GAEA that provides good agreement with the observed quenched fractions up toz∼ 3, we make predictions for the expected fractions of quiescent galaxies up toz∼ 7 and analyze the main quenching mechanism. We find that in a simulated box of 685 Mpc on a side, the first quenched massive (M∼ 1011M), Milky Way–mass, and low-mass (M∼ 109.5M) galaxies appear atz∼ 4.5,z∼ 6.2, and beforez= 7, respectively. Most quenched galaxies identified at early redshifts remain quenched for more than 1 Gyr. Independently of galaxy stellar mass, the dominant quenching mechanism at high redshift is accretion disk feedback (quasar winds) from a central massive black hole, which is triggered by mergers in massive and Milky Way–mass galaxies and by disk instabilities in low-mass galaxies. Environmental stripping becomes increasingly more important at lower redshift. 
    more » « less
  5. ABSTRACT We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($$\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($$\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$$), no additional environmental quenching is required. 
    more » « less
  6. Abstract We report the discovery of 15 exceptionally luminous 10 ≲z≲ 14 candidate galaxies discovered in the first 0.28 deg2of JWST/NIRCam imaging from the COSMOS-Web survey. These sources span rest-frame UV magnitudes of −20.5 >MUV> −22, and thus constitute the most intrinsically luminousz≳ 10 candidates identified by JWST to date. Selected via NIRCam imaging, deep ground-based observations corroborate their detection and help significantly constrain their photometric redshifts. We analyze their spectral energy distributions using multiple open-source codes and evaluate the probability of low-redshift solutions; we conclude that 12/15 (80%) are likely genuinez≳ 10 sources and 3/15 (20%) likely low-redshift contaminants. Three of ourz∼ 12 candidates push the limits of early stellar mass assembly: they have estimated stellar masses ∼ 5 × 109M, implying an effective stellar baryon fraction ofϵ∼ 0.2−0.5, whereϵ≡M/(fbMhalo). The assembly of such stellar reservoirs is made possible due to rapid, burst-driven star formation on timescales < 100 Myr where the star formation rate may far outpace the growth of the underlying dark matter halos. This is supported by the similar volume densities inferred forM∼ 1010Mgalaxies relative toM∼ 109M—both about 10−6Mpc−3—implying they live in halos of comparable mass. At such high redshifts, the duty cycle for starbursts would be of order unity, which could cause the observed change in the shape of the UV luminosity function from a double power law to a Schechter function atz≈ 8. Spectroscopic redshift confirmation and ensuing constraints of their masses will be critical to understand how, and if, such early massive galaxies push the limits of galaxy formation in the Lambda cold dark matter paradigm. 
    more » « less
  7. Abstract We analyze the evolution of massive (log10[M/M] > 10) galaxies atz∼ 1–4 selected from JWST Cosmic Evolution Early Release Survey (CEERS). We infer the physical properties of all galaxies in the CEERS NIRCam imaging through spectral energy distribution (SED) fitting withdense basisto select a sample of high-redshift massive galaxies. Where available we include constraints from additional CEERS observing modes, including 18 sources with MIRI photometric coverage, and 28 sources with spectroscopic confirmations from NIRSpec or NIRCam WFSS. We sample the recovered posteriors in stellar mass from SED fitting to infer the volume densities of massive galaxies across cosmic time, taking into consideration the potential for sample contamination by active galactic nuclei. We find that the evolving abundance of massive galaxies tracks expectations based on a constant baryon conversion efficiency in dark matter halos forz∼ 1–4. At higher redshifts, we observe an excess abundance of massive galaxies relative to this simple model, resulting in a shallower decline of observed volume densities of massive galaxies. These higher abundances can be explained by modest changes to star formation physics and/or the efficiencies with which star formation occurs in massive dark matter halos, and are not in tension with modern cosmology. 
    more » « less
  8. Abstract The Baldwin, Philips, & Terlevich diagram of [Oiii]/Hβversus [Nii]/Hα(hereafter N2-BPT) has long been used as a tool for classifying galaxies based on the dominant source of ionizing radiation. Recent observations have demonstrated that galaxies atz∼ 2 reside offset from local galaxies in the N2-BPT space. In this paper, we conduct a series of controlled numerical experiments to understand the potential physical processes driving this offset. We model nebular line emission in a large sample of galaxies, taken from thesimbacosmological hydrodynamic galaxy formation simulation, using thecloudyphotoionization code to compute the nebular line luminosities from Hiiregions. We find that the observed shift toward higher [Oiii]/Hβand [Nii]/Hαvalues at high redshift arises from sample selection: when we consider only the most massive galaxiesM*∼ 1010–11M, the offset naturally appears, due to their high metallicities. We predict that deeper observations that probe lower-mass galaxies will reveal galaxies that lie on a locus comparable toz∼ 0 observations. Even when accounting for samples-selection effects, we find that there is a subtle mismatch between simulations and observations. To resolve this discrepancy, we investigate the impact of varying ionization parameters, Hiiregion densities, gas-phase abundance patterns, and increasing radiation field hardness on N2-BPT diagrams. We find that either decreasing the ionization parameter or increasing the N/O ratio of galaxies at fixed O/H can move galaxies along a self-similar arc in N2-BPT space that is occupied by high-redshift galaxies. 
    more » « less
  9. Modeling emission lines from the millimeter to the UV and producing synthetic spectra is crucial for a good understanding of observations, yet it is an art filled with hazards. This is the proceedings of “Walking the Line”, a 3-day conference held in 2018 that brought together scientists working on different aspects of emission line simulations, in order to share knowledge and discuss the methodology. Emission lines across the spectrum from the millimeter to the UV were discussed, with most of the focus on the interstellar medium, but also some topics on the circumgalactic medium. The most important quality of a useful model is a good synergy with observations and experiments. Challenges in simulating line emission are identified, some of which are already being worked upon, and others that must be addressed in the future for models to agree with observations. Recent advances in several areas aiming at achieving that synergy are summarized here, from micro-physical to galactic and circum-galactic scale. 
    more » « less