skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hochberg, Yonit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inverse decays are an interesting avenue for producing dark matter in the early Universe. We study in detail various phases of dark matter parameter space where inverse decays control its abundance, expanding on our work of inverse decay (INDY) dark matter and going beyond. The role of initial conditions and the impact of departure from kinetic equilibrium are investigated as well. We show how these inverse decay phases can arise in theories of a kinetically mixed dark photon and dark Higgs, with promising prospects for detection at upcoming experiments. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Solid-state phonon and charge detectors probe the scattering of weakly interacting particles, such as dark matter and neutrinos, through their low recoil thresholds. Recent advancements have pushed sensitivity to eV-scale energy depositions, uncovering previously unseen low-energy excess backgrounds. While some arise from known processes such as thermal radiation, luminescence, and stress, others remain unexplained. This review examines these backgrounds, their possible origins, and parallels to low-energy effects in solids, an understanding of which is essential for interpreting particle interactions at and below the eV scale. 
    more » « less
    Free, publicly-accessible full text available June 24, 2026
  3. A bstract We introduce Super-Resonant Dark Matter , a model of self-interacting dark matter based on the low energy effective theory of supersymmetric QCD. The structure of the theory ensures a resonant enhancement of the self-interactions of the low energy mesons, since their mass ratio is set by the number of colors and flavors. The velocity dependence of the resonantly enhanced self-interactions allows such theories to accommodate puzzles in small scale structure that arise from dark matter halos of different sizes. The dark matter mass is then predicted to be around 3–4 MeV, with its abundance set by freeze-in via a kinetically mixed dark photon. 
    more » « less
  4. null (Ed.)