skip to main content

Search for: All records

Creators/Authors contains: "Hoffmann, Lars"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 16, 2024
  2. Abstract

    We analyze the gravity waves (GWs) observed by a Rayleigh lidar at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (16.08°E, 69.38°N) in Norway atz ∼ 20–85 km on 12–14 January 2016. These GWs propagate upward and downward away fromzknee = 57 and 64 km at a horizontally‐displaced location with periodsτr ∼ 5–10 hr and vertical wavelengthsλz ∼ 9–20 km. Because the hodographs are distorted, we introduce an alternative method to determine the GW parameters. We find that these GWs are medium to large‐scale, and propagate north/northwestward with intrinsic horizontal phase speeds of ∼35–65 m/s. Since the GW parameters are similar above and belowzknee, these are secondary GWs created by local body forces (LBFs) south/southeast of ALOMAR. We use the nudged HIAMCM (HIgh Altitude Mechanistic general Circulation Model) to model these events. Remarkably, the model reproduces similar GW structures over ALOMAR, withzknee = 58 and 66 km. The event #1 GWs are created by a LBF at ∼35°E, ∼60°N, andz ∼ 58 km. This LBF is created by the breaking and dissipation of primary GWs generated and amplified by the imbalance of the polar night jet below the wind maximum; the primary GWs for this event are created atz ∼ 25–35 km at 49–53°N. We also find that the HIAMCM GWs agree well with those observed by the Atmospheric InfraRed Soundermore »(AIRS) satellite, and that those AIRS GWs south and north of ∼50°N over Europe are mainly mountain waves and GWs from the polar vortex, respectively.

    « less
    Free, publicly-accessible full text available January 4, 2024
  3. Abstract

    We conducted simulations with a 4‐km resolution for Hurricane Joaquin in 2015 using the weather research and forecast (WRF) model. The model data are used to study stratospheric gravity waves (GWs) generated by the hurricane and how they correlate with hurricane intensity. The simulation results show spiral GWs propagating upward and anticlockwise away from the hurricane center. GWs with vertical wavelengths up to 14 km are generated. We find that GW activity is more frequent and intense during hurricane intensification than during weakening, particularly for the most intense GW activity. There are significant correlations between the change of stratospheric GW intensity and hurricane intensity. Therefore, the emergence of intensive stratospheric GW activity may be considered a useful proxy for identifying hurricane intensification.

  4. Abstract

    Observations during 12 January 2016 revealed a series of events of significant gravity wave (GW) activity over Europe. Analysis of derived temperatures from the Atmospheric InfraRed Sounder (AIRS) provides insight into the sources of these GWs, and include a new observation of stratosphere polar night jet (PNJ) generated GWs. Mountain waves were present during this time as well over the French Alps and the Carpathian Mountains and had maximum temperature perturbations,T′, as large as 27 K over the French Alps. Further investigation of the mountain waves that demonstrated their presence in the stratosphere was determined not only by stratospheric conditions but also by strong winds in the troposphere and at the surface. GWs generated in the stratosphere by the PNJ had maximumT′ of 7 K. These observations demonstrate multiple sources of GWs during a dynamically active period and implicate the role of the PNJ in both the vertical propagation of GWs generated in the troposphere and the generation of GWs from the PNJ itself.

  5. Abstract

    Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx= 3-km regional domain. All domains had tops near 1 Pa (z≈ 80 km). These deep domains allowedquantitativevalidation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 timesmore »smaller than that resolved at Δx≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.

    Significance Statement

    This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx≈ 10-km resolution global weather models. Even Δx≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.

    « less
  6. Abstract

    A mountain wave with a significant brightness temperature amplitude and ~500 km horizontal wavelength was observed over the Andes on 24–25 July 2017 in Atmospheric Infrared Sounder (AIRS)/Aqua satellite data. In the Modern‐Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2), reanalysis data, the intense eastward wind flowed over the Andes. Visible/Infrared Imaging Radiometer Suite (VIIRS)/Suomi‐NPP (National Polar‐orbiting Partnership) did not detect the mountain waves; however, it observed concentric ring‐like waves in the nightglow emissions at ~87 km with ~100 km wavelengths on the same night over and leeward of the Southern Andes. A ray tracing analysis showed that the mountain waves propagated to the east of the Andes, where concentric ring‐like waves appeared above a region of mountain wave breaking. Therefore, the concentric ring‐like waves were likely secondary waves generated by momentum deposition that accompanied mountain wave breaking. These results provide the first direct evidence for secondary gravity waves generated by momentum deposition.

  7. Abstract

    During 30 September to 9 October 2016, Hurricane Matthew traversed the Caribbean Sea to the east coast of the United States. During its period of greatest intensity, in the central Caribbean, Matthew excited a large number of concentric gravity waves (GWs or CGWs). In this paper, we report on hurricane‐generated CGWs observed in both the stratosphere and mesosphere from spaceborne satellites and in the ionosphere by ground Global Positioning System receivers. We found CGWs with horizontal wavelengths of ~200–300 km in the stratosphere (height of ~30–40 km) and in the airglow layer of the mesopause (height of ~85–90 km), and we found concentric traveling ionospheric disturbances (TIDs or CTIDs) with horizontal wavelengths of ~250–350 km in the ionosphere (height of ~100–400 km). The observed TIDs lasted for more than several hours on 1, 2, and 7 October 2016. We also briefly discuss the vertical and horizontal propagation of the Hurricane Matthew‐induced GWs and TIDs. This study shows that Hurricane Matthew induced significant dynamical coupling between the troposphere and the entire middle and upper atmosphere via GWs. It is the first comprehensive satellite analysis of gravity wave propagation generated by hurricane event from the troposphere through the stratosphere and mesosphere into the ionosphere.