Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ice core measurements reveal dipole-like snow accumulation trends over West Antarctica throughout the 20th century, with an increase of >2000 billion metric tons over the Antarctic Peninsula and Ellsworth Land but a decrease of ~500 billion metric tons over Marie Byrd Land. Although atmospheric teleconnections were frequently revealed, linking variability between tropics and higher latitudes on interannual and decadal timescales, centennial-scale teleconnection is absent from literature. Here, using statistical analysis and numerical experiments, we reveal that changes of tropical oceans throughout the 20th century drive the long-term Antarctic snowfall trend. A pronounced warming over the tropical Atlantic and a moderate cooling over the equatorial Pacific have driven an adjustment of moisture transport and thus snowfall pattern in West Antarctica. Our study reveals a centennial tropical-polar teleconnection, producing long-term trends with opposing changes across the regions. Remote forcing from the tropics increased the mass accumulation over Antarctica, balanced rapid iceshelf thinning in recent decades, contributing to global sea-level changes.more » « lessFree, publicly-accessible full text available January 31, 2026
-
Abstract Numerical modeling of ice sheet motion and hence projections of global sea level rise require information about the evolving subglacial environment, which unfortunately remains largely unknown due to its difficulty of access. Here we advance such subglacial observations by reporting multi‐year observations of seismic tremor likely associated with glacier sliding at Helheim Glacier. This association is confirmed by correlation analysis between tremor power and multiple environmental forcings on different timescales. Variations of the observed tremor power indicate that different factors affect glacial sliding on different timescales. Effective pressure may control glacial sliding on long (seasonal/annual) timescales, while tidal forcing modulates the sliding rate and tremor power on short (hourly/daily) timescales. Polarization results suggest that the tremor source comes from an upstream subglacial ridge. This observation provides insights on how different factors should be included in ice sheet modeling and how their timescales of variability play an essential role.more » « less
-
Knowledge gaps about how the ocean melts Antarctica’s ice shelves, borne from a lack of observations, lead to large uncertainties in sea level predictions. Using high-resolution maps of the underside of Dotson Ice Shelf, West Antarctica, we reveal the imprint that ice shelf basal melting leaves on the ice. Convection and intermittent warm water intrusions form widespread terraced features through slow melting in quiescent areas, while shear-driven turbulence rapidly melts smooth, eroded topographies in outflow areas, as well as enigmatic teardrop-shaped indentations that result from boundary-layer flow rotation. Full-thickness ice fractures, with bases modified by basal melting and convective processes, are observed throughout the area. This new wealth of processes, all active under a single ice shelf, must be considered to accurately predict future Antarctic ice shelf melt.more » « lessFree, publicly-accessible full text available August 2, 2025
-
Abstract Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica 1–3 . Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland 4 , making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre 2,3,5 . The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat 3,6 , both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base 7,8 , resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates.more » « less
-
Ice scallops are a small-scale (5–20 cm) quasi-periodic ripple pattern that occurs at the ice–water interface. Previous work has suggested that scallops form due to a self-reinforcing interaction between an evolving ice-surface geometry, an adjacent turbulent flow field and the resulting differential melt rates that occur along the interface. In this study, we perform a series of laboratory experiments in a refrigerated flume to quantitatively investigate the mechanisms of scallop formation and evolution in high resolution. Using particle image velocimetry, we probe an evolving ice–water boundary layer at sub-millimetre scales and 15 Hz frequency. Our data reveal three distinct regimes of ice–water interface evolution: a transition from flat to scalloped ice; an equilibrium scallop geometry; and an adjusting scallop interface. We find that scalloped-ice geometry produces a clear modification to the ice–water boundary layer, characterized by a time-mean recirculating eddy feature that forms in the scallop trough. Our primary finding is that scallops form due to a self-reinforcing feedback between the ice-interface geometry and shear production of turbulent kinetic energy in the flow interior. The length of this shear production zone is therefore hypothesized to set the scallop wavelength.more » « less
-
The Southern Ocean exerts a major influence on the mass balance of the Antarctic Ice Sheet, either indirectly, by its influence on air temperatures and winds, or directly, mostly through its effects on ice shelves. How much melting the ocean causes depends on the temperature of the water, which in turn is controlled by the combination of the thermal structure of the surrounding ocean and local ocean circulation, which in turn is determined largely by winds and bathymetry. As climate warms and atmospheric circulation changes, there will be follow-on changes in the ocean circulation and temperature. These consequences will affect the pace of mass loss of the Antarctic Ice Sheet.more » « less