skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Honnappa, Harsha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. New Insights into Off-line Estimation for Controlled Markov Chains Unveiled A team of researchers from Purdue and Northwestern Universities have unveiled new findings in off-line estimation for controlled Markov chains, addressing challenges in analyzing complex data generated under arbitrary dynamics. The study introduces a nonparametric estimator for transition probabilities, showcasing its robustness even in nonstationary, non-Markovian environments. The team developed precise sample complexity bounds, revealing a delicate interplay between mixing properties of the logging policy and data set size. Their analysis highlights how achieving optimal statistical risk depends on this trade-off, broadening the scope of off-line estimation under diverse conditions. Examples include ergodic and weakly ergodic chains as well as controlled chains with episodic or greedy controls. Significantly, this research confirms that the widely used estimator, which calculates state–action transition ratios, is minimax optimal, ensuring its reliability in general scenarios. This advancement paves the way for improved evaluation of stationary Markov control policies, marking a breakthrough in understanding complex off-line systems. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  2. Alquier, Pierre (Ed.)
    Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seek to characterize the resulting, typically intractable, posterior distributions. We present a Probably Approximately Correct (PAC)-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified. 
    more » « less
  3. In this paper, we establish strong embedding theorems, in the sense of the Komlós-Major-Tusnády framework, for the performance metrics of a general class of transitory queueing models of nonstationary queueing systems. The nonstationary and non-Markovian nature of these models makes the computation of performance metrics hard. The strong embeddings yield error bounds on sample path approximations by diffusion processes in the form of functional strong approximation theorems. 
    more » « less
  4. Nguyen, XuanLong (Ed.)
    We study the asymptotic consistency properties of α-Rényi approximate posteriors, a class of variational Bayesian methods that approximate an intractable Bayesian posterior with a member of a tractable family of distributions, the member chosen to minimize the α-Rényi divergence from the true posterior. Unique to our work is that we consider settings with α > 1, resulting in approximations that upperbound the log-likelihood, and consequently have wider spread than traditional variational approaches that minimize the Kullback-Liebler (KL) divergence from the posterior. Our primary result identifies sufficient conditions under which consistency holds, centering around the existence of a ‘good’ sequence of distributions in the approximating family that possesses, among other properties, the right rate of convergence to a limit distribution. We further characterize the good sequence by demonstrating that a sequence of distributions that converges too quickly cannot be a good sequence. We also extend our analysis to the setting where α equals one, corresponding to the minimizer of the reverse KL divergence, and to models with local latent variables. We also illustrate the existence of good sequence with a number of examples. Our results complement a growing body of work focused on the frequentist properties of variational Bayesian methods. 
    more » « less
  5. Abstract We establish sharp tail asymptotics for componentwise extreme values of bivariate Gaussian random vectors with arbitrary correlation between the components. We consider two scaling regimes for the tail event in which we demonstrate the existence of a restricted large deviations principle and identify the unique rate function associated with these asymptotics. Our results identify when the maxima of both coordinates are typically attained by two different versus the same index, and how this depends on the correlation between the coordinates of the bivariate Gaussian random vectors. Our results complement a growing body of work on the extremes of Gaussian processes. The results are also relevant for steady-state performance and simulation analysis of networks of infinite server queues. 
    more » « less