Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gentrification is a complex and context-specific process that involves changes in the built environment and social fabric of neighborhoods, often resulting in the displacement of vulnerable communities. Machine Learning (ML) has emerged as a powerful predictive tool that is capable of circumventing the methodological challenges that historically held back researchers from producing reliable forecasts of gentrification. Additionally, computer vision ML algorithms for landscape character assessment, or deep mapping, can now capture a wider range of built metrics related to gentrification-induced redevelopment. These novel ML applications promise to rapidly progress our understandings of gentrification and our capacity to translate academic findings into more productive direction for communities and stakeholders, but with this sudden development comes a steep learning curve. The current paper aims to bridge this divide by providing an overview of recent progress and an actionable template of use that is accessible for researchers across a wide array of academic fields. As a secondary point of emphasis, the review goes over Explainable Artificial Intelligence (XAI) tools for gentrification models and opens up discussion on the nuanced challenges that arise when applying black-box models to human systems. Abstract: Gentrification is a complex and context-specific process that involves changes in the built environment and social fabric of neighborhoods, often resulting in the displacement of vulnerable communities. Machine Learning (ML) has emerged as a powerful predictive tool that is capable of circumventing the methodological challenges that historically held back researchers from producing reliable forecasts of gentrification. Additionally, computer vision ML algorithms for landscape character assessment, or deep mapping, can now capture a wider range of built metrics related to gentrification-induced redevelopment. These novel ML applications promise to rapidly progress our understandings of gentrification and our capacity to translate academic findings into more productive direction for communities and stakeholders, but with this sudden development comes a steep learning curve. The current paper aims to bridge this divide by providing an overview of recent progress and an actionable template of use that is accessible for researchers across a wide array of academic fields. As a secondary point of emphasis, the review goes over Explainable Artificial Intelligence (XAI) tools for gentrification models and opens up discussion on the nuanced challenges that arise when applying black-box models to human systems.more » « less
-
ABSTRACT Improved energy performance and occupant comfort are driving building design decisions due to the increasing demand for sustainable and green buildings. However, despite the variety of technological developments in other fields, the range of solutions to improve building performance is limited. One of the main limitations for an early designer is a performance evaluation method to facilitate the design process. This paper offers a new shading performance optimization process that can help designers evaluate both daylighting and energy performance and generate optimized and flexible designs that can be further improved by implementing user-specific automation. The proposed performance optimization method utilizes parametric design, building simulation models, and Genetic Algorithms. Common shading design systems are explored through parametric design, and daylighting and energy modeling simulations are performed to evaluate shading device performance. Genetic Algorithms are used to identify design options with optimal energy and daylighting performance. A case study is conducted to verify the effectiveness of the overall process. Results are used to analyze the influence of design decisions among different shading designs. Finally, future directions in both shading design and energy optimization are presented.more » « less
-
Smart buildings promise to adapt environmental conditions to the needs of occupants based on statistical analytics applied to various monitored data. While sensors for accurate monitoring of building parameters such as temperature, lighting, and air-quality abound, currently available occupancy sensors are limited to sensing of presence only, with limited accuracy. Doppler radar sensors have shown great promise for unobtrusive recognition and monitoring of occupant presence, count, activity, and cardiopulmonary vital signs. With such measures, a smart building can optimize operations not only for the most efficient use of energy and space, but also to create healthy and sustainable environments that support occupant wellness, comfort, and productivity. This paper presents an overview of Doppler radar occupancy sensors for smart building applications.more » « less
-
Abstract This paper presents the results from an international survey that investigated the impacts of the built environment on occupant well-being during the corona virus disease 2019 (COVID-19) pandemic when most professionals were forced to work from home (WFH). The survey was comprised of 81 questions focusing on the respondent's profiles, residences, home indoor environmental quality, health, and home working experiences. A total of 1460 responses were collected from 35 countries, and 1137 of them were considered complete for the analysis. The results suggest that home spatial layout has a significant impact on occupant well-being during WFH since home-life distractions and noises due to the lack of a personal workspace are likely to prevent productive work. Lack of scenic views, inadequate daylighting, and poor acoustics were also reported to be detrimental to occupant productivity and the general WFH experience. It is also revealed from this survey that temperature, relative humidity, and indoor air quality generally have higher satisfaction ratios compared with the indoor lighting and acoustic conditions, and the home layout. Hence, home design for lighting, acoustics, and layout should also receive greater attention in the future.more » « less
-
null (Ed.)Buildings are subject to significant stresses due to climate change and design strategies for climate resilient buildings are rife with uncertainties which could make interpreting energy use distributions difficult and questionable. This study intends to enhance a robust and credible estimate of the uncertainties and interpretations of building energy performance under climate change. A four-step climate uncertainty propagation approach which propagates downscaled future weather file uncertainties into building energy use is examined. The four-step approach integrates dynamic building simulation, fitting a distribution to average annual weather variables, regression model (between average annual weather variables and energy use) and random sampling. The impact of fitting different distributions to the weather variable (such as Normal, Beta, Weibull, etc.) and regression models (Multiple Linear and Principal Component Regression) of the uncertainty propagation method on cooling and heating energy use distribution for a sample reference office building is evaluated. Results show selecting a full principal component regression model following a best-fit distribution for each principal component of the weather variables can reduce the variation of the output energy distribution compared to simulated data. The results offer a way of understanding compound building energy use distributions and parsing the uncertain nature of climate projections.more » « less
An official website of the United States government

Full Text Available