skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Horowitz, Gary T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We show that the general charged, rotating black hole in five-dimensional Einstein-Maxwell theory has a singular extremal limit. Only the known analytic solutions with exactly zero charge or zero angular momenta have smooth extremal horizons. We also consider general black holes in five-dimensional Einstein-Maxwell-Chern-Simons theory, and show that they also have singular extremal limits except for one special value of the coefficient of the Chern-Simons term (the one fixed by supergravity). Combining this with earlier results showing that extremal black holes have singular horizons in four-dimensional general relativity with small higher derivative corrections, and in anti-de Sitter space with perturbed boundary conditions, one sees that smooth extremal horizons are indeed the exception and not the rule. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Matter falling into a Schwarzschild-AdS black hole from the left causes increased focussing of ingoing geodesics from the right, and, as a consequence, they reach the singularity sooner. In a standard Penrose diagram, the singularity “bends down”. We show how to detect this feature of the singularity holographically, using a boundary two-point function. We model the matter with a shock wave, and show that this bending down of the singularity can be read off from a novel analytic continuation of the boundary two-point function. Along the way, we obtain a generalization of the recently proposed thermal product formula for two-point correlators. 
    more » « less
  4. A bstract We investigate the geometry near the horizon of a generic, four-dimensional extremal black hole. When the cosmological constant is negative, we show that (in almost all cases) tidal forces diverge as one crosses the horizon, and this singularity is stronger for larger black holes. In particular, this applies to generic nonspherical black holes, such as those satisfying inhomogeneous boundary conditions. Nevertheless, all scalar curvature invariants remain finite. Moreover, we show that nonextremal black holes have tidal forces that diverge in the extremal limit. Holographically, this singularity is reflected in anomalous scaling of the specific heat with temperature. Similar (albeit weaker) effects are present when the cosmological constant is positive, but not when it vanishes. 
    more » « less
  5. A bstract In holography, the IR behavior of a quantum system at nonzero density is described by the near horizon geometry of an extremal charged black hole. It is commonly believed that for systems on S 3 , this near horizon geometry is AdS 2 × S 3 . We show that this is not the case: generic static, nonspherical perturbations of AdS 2 × S 3 blow up at the horizon, showing that it is not a stable IR fixed point. We then construct a new near horizon geometry which is invariant under only SO(3) (and not SO(4)) symmetry and show that it is stable to SO(3)-preserving perturbations (but not in general). We also show that an open set of nonextremal, SO(3)-invariant charged black holes develop this new near horizon geometry in the limit T → 0. Our new IR geometry still has AdS 2 symmetry, but it is warped over a deformed sphere. We also construct many other near horizon geometries, including some with no rotational symmetries, but expect them all to be unstable IR fixed points. 
    more » « less
  6. Abstract In general relativity (without matter), there is typically a one parameter family of static, maximally symmetric black hole solutions labeled by their mass. We show that there are situations with many more black holes. We study asymptotically anti-de Sitter solutions in six and seven dimensions having a conformal boundary which is a product of spheres cross time. We show that the number of families of static, maximally symmetric black holes depends on the ratio, λ , of the radii of the boundary spheres. As λ approaches a critical value, λ c , the number of such families becomes infinite. In each family, we can take the size of the black hole to zero, obtaining an infinite number of static, maximally symmetric non-black hole solutions. We discuss several applications of these results, including Hawking–Page phase transitions and the phase diagram of dual field theories on a product of spheres, new positive energy conjectures, and more. 
    more » « less
  7. A bstract We study charged perturbations of the thermofield double state dual to a charged AdS black hole. We model the perturbation by a massless charged shell in the bulk. Unlike the neutral case, all such shells bounce at a definite radius, which can be behind the horizon. We show that the standard “shock wave” calculation of a scrambling time indicates that adding charge increases the scrambling time. We then give two arguments using the bounce that suggest that scrambling does not actually take longer when charge is added, but instead its onset is delayed. We also construct a boundary four point function which detects whether the shell bounces inside the black hole. 
    more » « less
  8. A bstract We study a family of four-dimensional, asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Surprisingly, the maximum charge for given mass is a nonsingular hairy black hole with nonzero Hawking temperature. The implications for Hawking evaporation are discussed. 
    more » « less
  9. A bstract We study the interior of a recently constructed family of asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Inside the horizon, these black holes resemble the interior of a holographic superconductor. There are analogs of the Josephson oscillations of the scalar field, and the final Kasner singularity depends very sensitively on the black hole parameters near the onset of the instability. In an appendix, we give a general argument that Cauchy horizons cannot exist in a large class of stationary black holes with scalar hair. 
    more » « less