Abstract We construct an explicit model for the black hole to white hole transition (known as the black hole fireworks scenario) using the cut-and-paste technique. We model a black hole collapse using the evolution of a time-like shell in the background of the loop quantum gravity inspired metric and then the space-like shell analysis to construct the firework geometry. Our simple and well-defined analysis removes some subtle issues that were present in the previous literature [1] and makes the examination of the junction conditions easier. We further point out that the infalling and asymptotic observers, both in ours and the original scenario in ref. [1], encounter quite different physics. While the proper time of the bounce for an infalling observer can be determined without ambiguity, the bouncing time interval for the asymptotic observer can be chosen arbitrarily by changing how one cuts and pastes the spacetimes outside the event horizons. It is puzzling that the proper time of a distant (rather than infalling) observer is subject to randomness since the infalling observer is supposed to experience a stronger quantum gravity effect. This result might suggest that a black hole firework scenario does not allow for the existence of an effectively classical spacetime inside the horizon. The main message is therefore that even if we strictly follow the thin shell formalism to cut and paste spacetimes, this does not guarantee that the resulting spacetime offers a physically reasonable background.
more »
« less
Bouncing inside the horizon and scrambling delays
A bstract We study charged perturbations of the thermofield double state dual to a charged AdS black hole. We model the perturbation by a massless charged shell in the bulk. Unlike the neutral case, all such shells bounce at a definite radius, which can be behind the horizon. We show that the standard “shock wave” calculation of a scrambling time indicates that adding charge increases the scrambling time. We then give two arguments using the bounce that suggest that scrambling does not actually take longer when charge is added, but instead its onset is delayed. We also construct a boundary four point function which detects whether the shell bounces inside the black hole.
more »
« less
- Award ID(s):
- 2107939
- PAR ID:
- 10408041
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 11
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We study a family of four-dimensional, asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Surprisingly, the maximum charge for given mass is a nonsingular hairy black hole with nonzero Hawking temperature. The implications for Hawking evaporation are discussed.more » « less
-
Abstract The collision of a primordial black hole with a neutron star results in the black hole eventually consuming the entire neutron star. However, if the black hole is magnetically charged, and therefore stable against decay by Hawking radiation, the consequences can be quite different. Upon colliding with a neutron star, a magnetic black hole very rapidly comes to a stop. For large enough magnetic charge, we show that this collision can be detected as a sudden change in the rotation period of the neutron star, a glitch or anti-glitch.We argue that the magnetic primordial black hole, which then settles to the core of the neutron star, does not necessarily devour the entire neutron star; the system can instead reach a long-lived, quasi-stable equilibrium. Because the black hole is microscopic compared to the neutron star, most stellar properties remain unchanged compared to before the collision. However, the neutron star will heat up and its surface magnetic field could potentially change, both effects potentially observable.more » « less
-
A bstract In two-derivative theories of gravity coupled to matter, charged black holes are self-attractive at large distances, with the force vanishing at zero temperature. However, in the presence of massless scalar fields and four-derivative corrections, zero-temperature black holes no longer need to obey the no-force condition. In this paper, we show how to calculate the long-range force between such black holes. We develop an efficient method for computing the higher-derivative corrections to the scalar charges when the theory has a shift symmetry, and compute the resulting force in a variety of examples. We find that higher-derivative corrected black holes may be self-attractive or self-repulsive, depending on the value of the Wilson coefficients and the VEVs of scalar moduli. Indeed, we find black hole solutions which are both superextremal and self-attractive. Furthermore, we present examples where no choice of higher-derivative coefficients allows for self-repulsive black hole states in all directions in charge space. This suggests that, unlike the Weak Gravity Conjecture, which may be satisfied by the black hole spectrum alone, the Repulsive Force Conjecture requires additional constraints on the spectrum of charged particles.more » « less
-
null (Ed.)We present fully general relativistic simulations of the quasi-circular inspiral and merger of charged, non-spinning, binary black holes with charge-to-mass ratio λ≤0.3. We discuss the key features that enabled long term and stable evolutions of these binaries. We also present a formalism for computing the angular momentum carried away by electromagnetic waves, and the electromagnetic contribution to black-hole horizon properties. We implement our formalism and present the results for the first time in numerical-relativity simulations. In addition, we compare our full non-linear solutions with existing approximate models for the inspiral and ringdown phases. We show that Newtonian models based on the quadrupole approximation have errors of 20 % - 100 % in key gauge-invariant quantities. On the other hand, for the systems considered, we find that estimates of the remnant black hole spin based on the motion of test particles in Kerr-Newman spacetimes agree with our non-linear calculations to within a few percent. Finally, we discuss the prospects for detecting black hole charge by future gravitational-wave detectors using either the inspiral-merger-ringdown signal or the ringdown signal alone.more » « less
An official website of the United States government

