skip to main content

Search for: All records

Creators/Authors contains: "Hou, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Inspired by the numerical evidence of a potential 3D Euler singularity by Luo- Hou [30,31] and the recent breakthrough by Elgindi [11] on the singularity formation of the 3D Euler equation without swirl with $C^{1,\alpha}$ initial data for the velocity, we prove the finite time singularity for the 2D Boussinesq and the 3D axisymmetric Euler equations in the presence of boundary with $C^{1,\alpha}$ initial data for the velocity (and density in the case of Boussinesq equations). Our finite time blowup solution for the 3D Euler equations and the singular solution considered in [30,31] share many essential features, including the symmetry properties of the solution, the flow structure, and the sign of the solution in each quadrant, except that we use $C^{1,\alpha}$ initial data for the velocity field. We use a dynamic rescaling formulation and follow the general framework of analysis developed by Elgindi in [11]. We also use some strategy proposed in our recent joint work with Huang in [7] and adopt several methods of analysis in [11] to establish the linear and nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the 3D Euler equations or the 2D Boussinesq equationsmore »with $C^{1,\alpha}$ initial data will develop a finite time singularity. Moreover, the velocity field has finite energy before the singularity time.« less
  3. We present a novel method of analysis and prove finite time asymptotically self- similar blowup of the De Gregorio model [13,14] for some smooth initial data on the real line with compact support. We also prove self-similar blowup results for the generalized De Gregorio model [41] for the entire range of parameter on R or $S^1$ for Holder continuous initial data with compact support. Our strategy is to reformulate the problem of proving finite time asymptotically self-similar singularity into the problem of establishing the nonlinear stability of an approximate self-similar profile with a small residual error using the dynamic rescaling equation. We use the energy method with appropriate singular weight functions to extract the damping effect from the linearized operator around the approximate self-similar profile and take into account cancellation among various nonlocal terms to establish stability analysis. We remark that our analysis does not rule out the possibility that the original De Gregorio model is well posed for smooth initial data on a circle. The method of analysis presented in this paper provides a promising new framework to analyze finite time singularity of nonlinear nonlocal systems of partial differential equations.
  4. We present a novel method of analysis and prove finite time asymptotically self- similar blowup of the De Gregorio model [13,14] for some smooth initial data on the real line with compact support. We also prove self-similar blowup results for the generalized De Gregorio model [41] for the entire range of parameter on R or $S^1$ for Holder continuous initial data with compact support. Our strategy is to reformulate the problem of proving finite time asymptotically self-similar singularity into the problem of establishing the nonlinear stability of an approximate self-similar profile with a small residual error using the dynamic rescaling equation. We use the energy method with appropriate singular weight functions to extract the damping effect from the linearized operator around the approximate self-similar profile and take into account cancellation among various nonlocal terms to establish stability analysis. We remark that our analysis does not rule out the possibility that the original De Gregorio model is well posed for smooth initial data on a circle. The method of analysis presented in this paper provides a promising new framework to analyze finite time singularity of nonlinear nonlocal systems of partial differential equations
  5. Meila, Marina and (Ed.)
    We propose a Multiscale Invertible Generative Network (MsIGN) and associated training algorithm that leverages multiscale structure to solve high-dimensional Bayesian inference. To address the curse of dimensionality, MsIGN exploits the low-dimensional nature of the posterior, and generates samples from coarse to fine scale (low to high dimension) by iteratively upsampling and refining samples. MsIGN is trained in a multistage manner to minimize the Jeffreys divergence, which avoids mode dropping in high-dimensional cases. On two high-dimensional Bayesian inverse problems, we show superior performance of MsIGN over previous approaches in posterior approximation and multiple mode capture. On the natural image synthesis task, MsIGN achieves superior performance in bits-per-dimension over baseline models and yields great interpret-ability of its neurons in intermediate layers.
  6. A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis).