skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hou, Yunhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes the risk-limiting unit commitment (RLUC) as the operational method to address the uncertainties in the smart grid with intelligent periphery (GRIP). Three key requirements are identified for the RLUC in GRIP. The first one requires the RLUC to be modeled as a multi-stage multi-period unit commitment problem considering power trades, operational constraints, and operational risks. The second one requires the RLUC considering the conditional prediction to achieve a globally optimal solution. It is addressed by using conditional probability in a scenario-based form. The last one requires the risk index in the RLUC to be both valid and computationally friendly, and it is tackled by the utilization of a coherent risk index and the mathematical proof of a risk chain theorem. Finally, the comprehensive RLUC in GRIP satisfying all the three requirements is solved by an equivalent transformation into a mixed integer piecewise linear programming problem. Case studies on a 9-bus system, a realistic provincial power system, and a regional power grid in China demonstrate the advantages of the proposed RLUC in GRIP. 
    more » « less
  2. In this paper, an improved multi-period risk-limiting dispatch (IMRLD) is proposed as an operational method in power systems with high percentage renewables integration. The basic risk-limiting dispatch (BRLD) is chosen as an operational paradigm to address the uncertainty of renewables in this paper due to its three good features. In this paper, the BRLD is extended to the IMRLD so that it satisfies the fundamental operational requirements in the power industry. In order to solve the IMRLD problem, the convexity of the IMRLD is verified. A theorem is stated and proved to transform the IMRLD into a piece-wise linear optimization problem which can be efficiently solved. In addition, the locational marginal price of the IMRLD is derived to analyze the effect of renewables integration on the marginal operational cost. Finally, two numerical tests are conducted to validate the IMRLD. 
    more » « less