skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 21, 2025
  2. Free, publicly-accessible full text available September 21, 2025
  3. Gruosso, Giambattista (Ed.)
  4. Organic cathode materials have attracted significant research attention recently, yet their low electronic conductivity limits their application as solid-state cathodes in lithium batteries. This work describes the development of a novel organic cathode chemistry with significant intrinsic electronic conductivity for solid-state thin film batteries. A polymeric charge transfer complex (CTC) cathode, poly(4-vinylpyridine)-iodine monochloride (P4VP·ICl), was prepared by initiated chemical vapor deposition (iCVD). Critical chemical, physical, and electrochemical properties of the CTC complex were characterized. The complex was found to have an electronic conductivity of 4 × 10-7 S cm-1 and total conductivity of 2 × 10−6 S cm−1 at room temperature, which allows the construction of a 2.7 μm thick dense cathode. By fabricating a P4VP·ICl|LIPON|Li thin film battery, the discharge capacity of P4VP·ICl was demonstrated to be >320 mA h cm−3 on both rigid and flexible substrates. The flexible P4VP·ICl|LIPON|Li battery was prepared by simply replacing the rigid substrate with a flexible polyimide substrate and the as-prepared battery can be bent 180° while maintaining electrochemical performance. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)