skip to main content

Search for: All records

Creators/Authors contains: "Hu, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data,more »individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.

    « less
  2. A thermal component is suggested to be the physical composition of the ejecta of several bright gamma-ray bursts (GRBs). Such a thermal component is discovered in the time-integrated spectra of several short GRBs as well as long GRBs. In this work, we present a comprehensive analysis of ten very short GRBs detected by Fermi Gamma-Ray Burst Monitor to search for the thermal component. We found that both the resultant low-energy spectral index and the peak energy in each GRB imply a common hard spectral feature, which is in favor of the main classification of the short/hard versus long/soft dichotomy in the GRB duration. We also found moderate evidence for the detection of thermal component in eight GRBs. Although such a thermal component contributes a small proportion of the global prompt gamma-ray emission, the modified thermal-radiation mechanism could enhance the proportion significantly, such as in subphotospheric dissipation.
    Free, publicly-accessible full text available October 1, 2023
  3. Plants are vulnerable to disease through pathogen manipulation of phytohormone levels, which otherwise regulate development, abiotic, and biotic responses. Here, we show that the wheat pathogen Xanthomonas translucens pv. undulosa elevates expression of the host gene encoding 9- cis -epoxycarotenoid dioxygenase ( TaNCED-5BS ), which catalyzes the rate-limiting step in the biosynthesis of the phytohormone abscisic acid and a component of a major abiotic stress-response pathway, to promote disease susceptibility. Gene induction is mediated by a type III transcription activator-like effector. The induction of TaNCED-5BS results in elevated abscisic acid levels, reduced host transpiration and water loss, enhanced spread of bacteria in infected leaves, and decreased expression of the central defense gene TaNPR1 . The results represent an appropriation of host physiology by a bacterial virulence effector.