skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 9, 2026

Title: Khovanov homology and the cinquefoil
We prove that Khovanov homology with coefficients in\Z/2\Zdetects the(2,5)torus knot. Our proof makes use of a wide range of deep tools in Floer homology, Khovanov homology, and Khovanov homotopy. We combine these tools with classical results on the dynamics of surface homeomorphisms to reduce the detection question to a problem about mutually braided unknots, which we then solve with computer assistance.  more » « less
Award ID(s):
1952707
PAR ID:
10598955
Author(s) / Creator(s):
; ;
Publisher / Repository:
European Mathematical Society
Date Published:
Journal Name:
Journal of the European Mathematical Society
Volume:
27
Issue:
6
ISSN:
1435-9855
Page Range / eLocation ID:
2443 to 2465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Viewing the BRAID invariant as a generator of link Floer homology, we generalize work of Baldwin–Vela-Vick to obtain rank bounds on the next-to-top grading of knot Floer homology. These allow us to classify links with knot Floer homology of rank at most eight and prove a variant of a classification of links with Khovanov homology of low rank due to Xie–Zhang. In another direction, we use a variant of Ozsváth–Szabó's classification ofE_2collapsed\mathbb{Z}\oplus\mathbb{Z}filtered chain complexes to show that knot Floer homology detectsT(2,8)andT(2,10). Combining these techniques with the spectral sequences of Batson–Seed, Dowlin, and Lee, we can show that Khovanov homology likewise detectsT(2,8)andT(2,10). 
    more » « less
  2. We construct a Kirby color in the setting of Khovanov homology: an ind-object of the annular Bar-Natan category that is equipped with a natural handle slide isomorphism. Using functoriality and cabling properties of Khovanov homology, we define a Kirby-colored Khovanov homology that is invariant under the handle slide Kirby move, up to isomorphism. Via the Manolescu–Neithalath 2-handle formula, Kirby-colored Khovanov homology agrees with the\mathfrak{gl}_{2}skein lasagna module, hence is an invariant of 4-dimensional 2-handlebodies. 
    more » « less
  3. Abstract We prove for the first time that knot Floer homology and Khovanov homology can detect non-fibered knots and that HOMFLY homology detects infinitely many knots; these theories were previously known to detect a mere six knots, all fibered. These results rely on our main technical theorem, which gives a complete classification of genus-1 knots in the 3-sphere whose knot Floer homology in the top Alexander grading is 2-dimensional. We discuss applications of this classification to problems in Dehn surgery which are carried out in two sequels. These include a proof that$$0$$-surgery characterizes infinitely many knots, generalizing results of Gabai from his 1987 resolution of the Property R Conjecture. 
    more » « less
  4. Abstract Morrison, Walker, and Wedrich used the blob complex to construct a generalization of Khovanov–Rozansky homology to links in the boundary of a 4-manifold. The degree zero part of their theory, called the skein lasagna module, admits an elementary definition in terms of certain diagrams in the 4-manifold. We give a description of the skein lasagna module for 4-manifolds without 1- and 3-handles, and present some explicit calculations for disk bundles over S 2 {S^{2}}. 
    more » « less
  5. Several authors have studied homomorphisms from first homology groups of modular curves to$$K_2(X)$$, with$$X$$either a cyclotomic ring or a modular curve. These maps send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units. We give a new construction of these maps and a direct proof of their Hecke equivariance, analogous to the construction of Siegel units using the universal elliptic curve. Our main tool is a$$1$$-cocycle from$$\mathrm {GL}_2(\mathbb {Z})$$to the second$$K$$-group of the function field of a suitable group scheme over$$X$$, from which the maps of interest arise by specialization. 
    more » « less