Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent advances in structural DNA nanotechnology have been facilitated by design tools that continue to push the limits of structural complexity while simplifying an often-tedious design process. We recently introduced the software MagicDNA, which enables design of complex 3D DNA assemblies with many components; however, the design of structures with free-form features like vertices or curvature still required iterative design guided by simulation feedback and user intuition. Here, we present an updated design tool, MagicDNA 2.0, that automates the design of free-form 3D geometries, leveraging design models informed by coarse-grained molecular dynamics simulations. Our GUI-based, stepwise design approach integrates a high level of automation with versatile control over assembly and subcomponent design parameters. We experimentally validated this approach by fabricating a range of DNA origami assemblies with complex free-form geometries, including a 3D Nozzle, G-clef, and Hilbert and Trifolium curves, confirming excellent agreement between design input, simulation, and structure formation.more » « less
-
Structural DNA nanotechnology has enabled the design and construction of complex nanoscale structures with precise geometry and programmable dynamic and mechanical properties. Recent efforts have led to major advances in the capacity to actuate shape changes of DNA origami devices and incorporate DNA origami into larger assemblies, which open the prospect of using DNA to design shape-morphing assemblies as components of micro-scale reconfigurable or sensing materials. Indeed, a few studies have constructed higher order assemblies with reconfigurable devices; however, these demonstrations have utilized structures with relatively simple motion, primarily hinges that open and close. To advance the shape changing capabilities of DNA origami assemblies, we developed a multi-component DNA origami 6-bar mechanism that can be reconfigured into various shapes and can be incorporated into larger assemblies while maintaining capabilities for a variety of shape transformations. We demonstrate the folding of the 6-bar mechanism into four different shapes and demonstrate multiple transitions between these shapes. We also studied the shape preferences of the 6-bar mechanism in competitive folding reactions to gain insight into the relative free energies of the shapes. Furthermore, we polymerized the 6-bar mechanism into tubes with various cross-sections, defined by the shape of the individual mechanism, and we demonstrate the ability to change the shape of the tube cross-section. This expansion of current single-device reconfiguration to higher order scales provides a foundation for nano to micron scale DNA nanotechnology applications such as biosensing or materials with tunable properties.more » « less
-
Abstract Combining surface‐initiated, TdT (terminal deoxynucleotidyl transferase) catalyzed enzymatic polymerization (SI‐TcEP) with precisely engineered DNA origami nanostructures (DONs) presents an innovative pathway for the generation of stable, polynucleotide brush‐functionalized DNA nanostructures. We demonstrate that SI‐TcEP can site‐specifically pattern DONs with brushes containing both natural and non‐natural nucleotides. The brush functionalization can be precisely controlled in terms of the location of initiation sites on the origami core and the brush height and composition. Coarse‐grained simulations predict the conformation of the brush‐functionalized DONs that agree well with the experimentally observed morphologies. We find that polynucleotide brush‐functionalization increases the nuclease resistance of DONs significantly, and that this stability can be spatially programmed through the site‐specific growth of polynucleotide brushes. The ability to site‐specifically decorate DONs with brushes of natural and non‐natural nucleotides provides access to a large range of functionalized DON architectures that would allow for further supramolecular assembly, and for potential applications in smart nanoscale delivery systems.more » « less