skip to main content

Search for: All records

Creators/Authors contains: "Huang, Guoliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. This study aimed to explore lignin as a naturally occurring aromatic precursor for the synthesis of LIG and further fabrication of ultrasensitive strain sensors for the detection of small deformations. One-step direct laser writing (DLW) induced high quality porous graphene, so called laser induced graphene (LIG), from kraft lignin under the conditions optimized for laser power, focus distance, and lignin loading. An electrode based on the resulting LIG was facilely fabricated by transferring LIG onto an elastomeric substrate ( i.e. , Dragon Skin™). The novel LIG transfer was facilitated by spin coating followed by water lifting, leading to the full retention of porous graphene onto the elastomeric substrate. The strain sensor was shown to be highly sensitive to small human body motions and tiny deformations caused by vibrations. It had a working range of up to 14% strain with a gauge factor of 960 and showed high stability as evidenced by repetitive signals over 10 000 cycles at 4% strain. The sensor was also successfully demonstrated for detecting human speaking, breath, seismocardiography (SCG), and movement of pulse and eye. Overall, the lignin-derived LIG can serve as excellent piezoresistive materials for wearable, stretchable, and ultrasensitive strain sensors with applications in human bodymore »motion monitoring and sound-related applications.« less
    Free, publicly-accessible full text available August 18, 2023
  3. Abstract Modern technological advances allow for the study of systems with additional synthetic dimensions. Higher-order topological insulators in topological states of matters have been pursued in lower physical dimensions by exploiting synthetic dimensions with phase transitions. While synthetic dimensions can be rendered in the photonics and cold atomic gases, little to no work has been succeeded in acoustics because acoustic wave-guides cannot be weakly coupled in a continuous fashion. Here, we formulate the theoretical principles and manufacture acoustic crystals composed of arrays of acoustic cavities strongly coupled through modulated channels to evidence one-dimensional (1D) and two-dimensional (2D) dynamic topological pumpings. In particular, the higher-order topological edge-bulk-edge and corner-bulk-corner transport are physically illustrated in finite-sized acoustic structures. We delineate the generated 2D and four-dimensional (4D) quantum Hall effects by calculating first and second Chern numbers and physically demonstrate robustness against the geometrical imperfections. Synthetic dimensions could provide a powerful way for acoustic topological wave steering and open up a platform to explore any continuous orbit in higher-order topological matter in dimensions four and higher.