skip to main content

Search for: All records

Creators/Authors contains: "Huang, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Abstract The BaZrO 3 /YBa 2 Cu 3 O 7 (BZO/YBCO) interface has been found to affect the vortex pinning efficiency of one-dimensional artificial pinning centers (1D-APC) of BZO. A defective BZO/YBCO interface due to a lattice mismatch of ∼7.7% has been blamed for the reduced pinning efficiency. Recently, we have shown incorporating Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7-x spacer layers in BZO/YBCO nanocomposite film in multilayer (ML) format can lead to a reduced lattice mismatch ∼1.4% through the enlargement of lattice constant of YBCO via Ca diffusion and partial Ca/Cu replacement on Cu-O planes. In this work, the effect of this interface engineering on the BZO 1D-APC pinning efficiency is investigated at temperatures of 65-81 K through a comparison between 2 and 6 vol.% BZO/YBCO ML samples with their single-layer (SL) counterparts. An overall higher pinning force ( F p ) density has been observed on the ML samples as compared to their SL counterparts. Specifically, the peak value of F p ( F p,max ) for the 6% BZO/YBCO ML film is about ∼ 4 times of that of its SL counterpart at 65 K. In addition, the location of the F p,max (more »B max ) in the ML samples shifts to higher values as a consequence of enhanced pinning. For the 6% BZO/YBCO ML sample, a much smaller “plateau-like” decrease of the B max with increasing temperature was observed, which is in contrast to approximately linear decrease of B max with increasing temperature in the 6% SL film. This result indicates the importance of restoring the BZO/YBCO interface quality for better pinning efficiency of BZO 1D-APCs especially at higher BZO doping concentration.« less
    Free, publicly-accessible full text available May 1, 2023
  3. Past research has recognized culture and gender variation in the experience of emotion, yet this has not been examined on a level of effective connectivity. To determine culture and gender differences in effec-tive connectivity during emotional experiences, we applied dynamic causal modeling (DCM) to electro-encephalography (EEG) measures of brain activity obtained from Chinese and American participants while they watched emotion-evoking images. Relative to US participants, Chinese participants favored a model bearing a more integrated dorsolateral prefrontal cortex (dlPFC) during fear v. neutral experiences. Meanwhile, relative to males, females favored a model bearing a less integrated dlPFC during fear v. neutral experiences. A culture-gender interaction for winning models was also observed; only US partici-pants showed an effect of gender, with US females favoring a model bearing a less integrated dlPFC compared to the other groups. These findings suggest that emotion and its neural correlates depend in part on the cultural background and gender of an individual. To our knowledge, this is also the first study to apply both DCM and EEG measures in examining culture-gender interaction and emotion.
    Free, publicly-accessible full text available January 1, 2023
  4. Free, publicly-accessible full text available April 1, 2023
  5. In order to contextualize calculus, first-year engineering students take on a semester-long design project that grounds engineering design as an epistemic practice. The project is designed to motivate students to creatively and collaboratively apply mathematical modeling to design roller coasters. Students are asked to engage as engineers and respond to a hypothetical theme park that has solicited design proposals for a new roller coaster. Students are required to use various mathematical functions such as polynomials and exponentials to create a piece-wise function that models the roller coaster track geometry. The entire project is composed of five modules, each lasting three weeks. Each module is associated with a specific calculus topic and is integrated into the design process in a form of a design constraint or performance metric. The module topics include continuity, smoothness, local maxima and minima, inflection points, and area under the curve. Students are expected to refine their models in each module, resulting in the iteration of the previous design to satisfy a new set of requirements. This paper presents the project organization, assessment methods, and student feedback. This work is part of a multi-year course intervention and professional development NSF project to increase the success of underrepresentedmore »and women students in engineering.« less
  6. Free, publicly-accessible full text available March 18, 2023
  7. n order to contextualize calculus, first-year engineering students take on a semester-long design project that grounds engineering design as an epistemic practice. The project is designed to motivate students to creatively and collaboratively apply mathematical modeling to design roller coasters. Students are asked to engage as engineers and respond to a hypothetical theme park that has solicited design proposals for a new roller coaster. Students are required to use various mathematical functions such as polynomials and exponentials to create a piece-wise function that models the roller coaster track geometry. The entire project is composed of five modules, each lasting three weeks. Each module is associated with a specific calculus topic and is integrated into the design process in a form of a design constraint or performance metric. The module topics include continuity, smoothness, local maxima and minima, inflection points, and area under the curve. Students are expected to refine their models in each module, resulting in the iteration of the previous design to satisfy a new set of requirements. This paper presents the project organization, assessment methods, and student feedback. This work is part of a multi-year course intervention and professional development NSF project to increase the success of underrepresentedmore »and women students in engineering.« less
  8. Free, publicly-accessible full text available January 1, 2023