skip to main content


Search for: All records

Creators/Authors contains: "Huang, Liguo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2024
  2. null (Ed.)
    Open source software licenses regulate the circumstances under which software can be redistributed, reused and modified. Ensuring license compatibility and preventing license restriction conflicts among source code during software changes are the key to protect their commercial use. However, selecting the appropriate licenses for software changes requires lots of experience and manual effort that involve examining, assimilating and comparing various licenses as well as understanding their relationships with software changes. Worse still, there is no state-of-the-art methodology to provide this capability. Motivated by this observation, we propose in this paper Automatic License Prediction (ALP), a novel learning-based method and tool for predicting licenses as software changes. An extensive evaluation of ALP on predicting licenses in 700 open source projects demonstrate its effectiveness: ALP can achieve not only a high overall prediction accuracy (92.5% in micro F1 score) but also high accuracies across all license types. 
    more » « less