Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
DNA polymerization gels are a new class of soft programmable materials capable of reversible 100-fold volumetric size changes induced by DNA-specific strand displacement reactions. By incorporating DNA circuits and spatial patterns, these gels could orchestrate complex, self-regulating processes of relevance to biosensing, robotics, and medicine. However, the ultrasoft nature of the gels and slow response times can limit applicability. We developed GO-DNA composite polymerization gels (CPGs) by blending DNA gels with graphene oxide (GO). Photopatterned ultra-thin GO-DNA CPG films, as thin as 8 μm, were achieved. Notably, GO-DNA CPGs exhibited similar rates of swelling but 60 times faster shrinking, suggesting that the introduction of inorganic nanoparticles could provide a means to tune the mechanical properties and swelling characteristics of DNA polymerization gels.more » « lessFree, publicly-accessible full text available July 29, 2025
-
Abstract The electrocatalytic hydrogen evolution reaction (HER) is one of the most studied and promising processes for hydrogen fuel generation. Single-atom catalysts have been shown to exhibit ultra-high HER catalytic activity, but the harsh preparation conditions and the low single-atom loading hinder their practical applications. Furthermore, promoting hydrogen evolution reaction kinetics, especially in alkaline electrolytes, remains as an important challenge. Herein, Pt/C60catalysts with high-loading, high-dispersion single-atomic platinum anchored on C60are achieved through a room-temperature synthetic strategy. Pt/C60-2 exhibits high HER catalytic performance with a low overpotential (η10) of 25 mV at 10 mA cm−2. Density functional theory calculations reveal that the Pt-C60polymeric structures in Pt/C60-2 favors water adsorption, and the shell-like charge redistribution around the Pt-bonding region induced by the curved surfaces of two adjacent C60facilitates the desorption of hydrogen, thus favoring fast reaction kinetics for hydrogen evolution.
-
The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22–24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.