skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Huang, Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Self-testing allows one to characterise quantum systems under minimal assumptions. However, existing schemes rely on quantum nonlocality and cannot be applied to systems that are not entangled. Here, we introduce a robust method that achieves self-testing of individual systems by taking advantage of contextuality. The scheme is based on the simplest contextuality witness for the simplest contextual quantum system—the Klyachko-Can-Binicioğlu-Shumovsky inequality for the qutrit. We establish a lower bound on the fidelity of the state and the measurements as a function of the value of the witness under a pragmatic assumption on the measurements. We apply the method in an experiment on a single trapped40Ca+using randomly chosen measurements and perfect detection efficiency. Using the observed statistics, we obtain an experimental demonstration of self-testing of a single quantum system.

    more » « less
    Free, publicly-accessible full text available October 19, 2024
  2. Empathy for children is critical for designing AI technologies that may affect children. This paper presents the work in progress of a study on the feasibility of a new method to provide objective understanding of people’s empathy for children based on functional near infrared spectroscopy (fNIRS). Adult participants (n=13) were presented with benign or concerning scenarios involving children interacting with AI technologies. Their brain activation patterns were recorded and analyzed. Preliminary data analysis revealed distinctive patterns in the mPFC region, which justifies future work to fully realize the potential of this method. 
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  3. Free, publicly-accessible full text available February 1, 2025
  4. Captions play a major role in making educational videos accessible to all and are known to benefit a wide range of learners. However, many educational videos either do not have captions or have inaccurate captions. Prior work has shown the benefits of using crowdsourcing to obtain accurate captions in a cost-efficient way, though there is a lack of understanding of how learners edit captions of educational videos either individually or collaboratively. In this work, we conducted a user study where 58 learners (in a course of 387 learners) participated in the editing of captions in 89 lecture videos that were generated by Automatic Speech Recognition (ASR) technologies. For each video, different learners conducted two rounds of editing. Based on editing logs, we created a taxonomy of errors in educational video captions (e.g., Discipline-Specific, General, Equations). From the interviews, we identified individual and collaborative error editing strategies. We then further demonstrated the feasibility of applying machine learning models to assist learners in editing. Our work provides practical implications for advancing video-based learning and for educational video caption editing. 
    more » « less
  5. Abstract

    A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–xyO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.

    more » « less
  6. Abstract The discovery and spectroscopic confirmation of Hyperion, a protosupercluster at z ∼ 2.47, provides an unprecedented opportunity to study distant galaxies in the context of their large-scale environment. We carry out deep narrowband imaging of a ≈1° × 1° region around Hyperion and select 157 Ly α emitters (LAEs). The inferred LAE overdensity is δ g ≈ 40 within an effective volume of 30 × 20 × 15 cMpc 3 , consistent with the fact that Hyperion is composed of multiple protoclusters and will evolve into a supercluster with a total mass of M tot ≈ 1.4 × 10 15 M ⊙ at z = 0. The distribution of LAEs closely mirrors that of known spectroscopic members, tracing the protocluster cores and extended filamentary arms connected to them, suggesting that they trace the same large-scale structure. By cross-correlating the LAE positions with H i tomography data, we find weak evidence that LAEs may be less abundant in the highest H i regions, perhaps because Ly α is suppressed in such regions. The Hyperion region hosts a large population of active galactic nuclei (AGNs) ≈ 12 times more abundant than that in the field. The prevalence of AGNs in protocluster regions hints at the possibility that they may be triggered by physical processes that occur more frequently in dense environments, such as galaxy mergers. Our study demonstrates LAEs as reliable markers of the largest cosmic structures. When combined with ongoing and upcoming imaging and spectroscopic surveys, wide-field narrowband imaging has the potential to advance our knowledge in the formation and evolution of cosmic structures and of their galaxy inhabitants. 
    more » « less