Multiple abrupt warming events (“hyperthermals”) punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation’s sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 11, 2025
-
Abstract Oxygen minimum zones (OMZs) play a critical role in global biogeochemical cycling and act as barriers to dispersal for marine organisms. OMZs are currently expanding and intensifying with climate change, however past distributions of OMZs are relatively unknown. Here we present evidence for widespread pelagic OMZs during the Pliocene (5.3-2.6 Ma), the most recent epoch with atmospheric CO2analogous to modern (~400-450 ppm). The global distribution of OMZ-affiliated planktic foraminifer,
Globorotaloides hexagonus , and Earth System and Species Distribution Models show that the Indian Ocean, Eastern Equatorial Pacific, eastern South Pacific, and eastern North Atlantic all supported OMZs in the Pliocene, as today. By contrast, low-oxygen waters were reduced in the North Pacific and expanded in the North Atlantic in the Pliocene. This spatially explicit perspective reveals that a warmer world can support both regionally expanded and contracted OMZs, with intermediate water circulation as a key driver. -
The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ 18 O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in >60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ 18 O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ 18 O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO 2 , continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states.more » « less
-
null (Ed.)Abstract. Oxygen-depleted regions of the global ocean are rapidly expanding, withimportant implications for global biogeochemical cycles. However, ourability to make projections about the future of oxygen in the ocean islimited by a lack of empirical data with which to test and constrain thebehavior of global climatic and oceanographic models. We usedepth-stratified plankton tows to demonstrate that some species of plankticforaminifera are adapted to life in the heart of the pelagic oxygen minimumzone (OMZ). In particular, we identify two species, Globorotaloides hexagonus and Hastigerina parapelagica, living within theeastern tropical North Pacific OMZ. The tests of the former are preserved inmarine sediments and could be used to trace the extent and intensity oflow-oxygen pelagic habitats in the fossil record. Additional morphometricanalyses of G. hexagonus show that tests found in the lowest oxygen environments arelarger, more porous, less dense, and have more chambers in the final whorl.The association of this species with the OMZ and the apparent plasticity ofits test in response to ambient oxygenation invites the use of G. hexagonus tests insediment cores as potential proxies for both the presence and intensity ofoverlying OMZs.more » « less
-
Abstract Spines and rhizopodia play an important role in the feeding behavior, symbiont ecology, shell geochemistry, and density and drag of planktonic foraminifera. However, there are few empirical data on planktonic foraminifera in situ, and these delicate structures are disturbed on capture. Here, we report spine and rhizopod measurements from underwater images obtained in the California Current System near La Jolla, California by Zooglider, a new autonomous zooplankton-sensing glider. Across all observed species, we find that spine length and flexibility correlate with test size and that spines increase the effective prey encounter volume of spinose foraminifera by two to three orders of magnitude. Our data also yielded several novel observations regarding hastigerinid foraminifera (Hastigerinella digitata and Hastigerina pelagica), a group of unusually large planktonic foraminifera that are abundant in our dataset below 250 m. First, the effective encounter volume of hastigerinid foraminifera can be very large: our largest specimen occupies almost 40 cm3 (about the size of a golf ball), while the median specimen occupies 5.3 cm3 (about the size of a cherry). Second, the majority of hastigerinid foraminifera in our dataset have asymmetric bubble capsules, which are most frequently oriented with their bubbles on the upward side of the test, consistent with the hypothesis that the bubble capsule is positively buoyant. Third, 16% of hastigerinid foraminifera in our dataset have dispersed bubble capsules with detached bubbles distributed along the spines and rhizopodia, consistent with a regular source of natural disturbance. Taken together, our observations suggest that hastigerinid foraminifera play a larger role as mesopelagic predators in the California Current System than previously recognized.more » « less
-
Marine protists are integral to the structure and function of pelagic ecosystems and marine carbon cycling, with rhizarian biomass alone accounting for more than half of all mesozooplankton in the oligotrophic oceans. Yet, understanding how their environment shapes diversity within species and across taxa is limited by a paucity of observations of heritability and life history. Here, we present observations of asexual reproduction, morphologic plasticity, and ontogeny in the planktic foraminifer Neogloboquadrina pachyderma in laboratory culture. Our results demonstrate that planktic foraminifera reproduce both sexually and asexually and demonstrate extensive phenotypic plasticity in response to nonheritable factors. These two processes fundamentally explain the rapid spatial and temporal response of even imperceptibly low populations of planktic foraminifera to optimal conditions and the diversity and ubiquity of these species across the range of environmental conditions that occur in the ocean.more » « less
-
Abstract Chert, porcelainite, and other siliceous phases are exceptionally common in Atlantic sedimentary records of the early Eocene, but the origins of these facies remain enigmatic. The early Eocene was also the warmest interval of the entire Cenozoic Era, punctuated by numerous discrete warming events termed “hyperthermals,” the largest of which is termed the Paleocene‐Eocene Thermal Maximum (~56 Ma). Here we present new and published lithologic and carbon isotope records of silica‐bearing lower Eocene sediments and suggest a link between the ubiquitous Atlantic cherts of that time period and hyperthermal events. Our data demonstrate that many of these Atlantic siliceous horizons coincide with negative carbon isotope excursions (a hallmark of hyperthermal events), including a previously unrecognized record of the Paleocene‐Eocene Thermal Maximum in the South Atlantic. Hyperthermal‐associated silica burial appears to be focused in the western middle to high latitudes of both the North and South Atlantic, with no association between siliceous facies and hyperthermal events found in the Pacific. We also present a new model of the coupled carbon and silica cycles (LOSiCAR) to demonstrate that enhanced silicate weathering during these events would require a rapid increase in total marine silica burial. Model experiments that include previously suggested transient reversals in the pattern of deep‐ocean circulation during hyperthermals demonstrate that such a mechanism can explain the apparent focusing of elevated silica burial into the Atlantic. This combination—a silicate weathering feedback in response to global warming along with a circulation‐driven focusing of silica burial—represents a new mechanism for the formation of deep‐sea cherts in lower Eocene Atlantic sedimentary records and may be relevant to understanding chert formation in other intervals of Earth history.
-
Abstract Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High‐resolution paleoclimate records with Milankovitch imprints now allow reversing the traditional cyclostratigraphic approach: Middle Eocene drift sediments from Newfoundland Ridge are well‐suited for this purpose, due to high sedimentation rates and distinct lithological cycles. Per contra, the stratigraphies of Integrated Ocean Drilling Program Sites U1408–U1410 are highly complex with several hiatuses. Here, we built a two‐site composite and constructed a conservative age‐depth model to provide a reliable chronology for this rhythmic, highly resolved (<1 kyr) sedimentary archive. Astronomical components (g‐terms and precession constant) are extracted from proxy time‐series using two different techniques, producing consistent results. We find astronomical frequencies up to 4% lower than reported in astronomical solution La04. This solution, however, was smoothed over 20‐Myr intervals, and our results therefore provide constraints on g‐term variability on shorter, million‐year timescales. We also report first evidence that the
g 4–g 3“grand eccentricity cycle” may have had a 1.2‐Myr period around 41 Ma, contrary to its 2.4‐Myr periodicity today. Our median precession constant estimate (51.28 ± 0.56″/year) confirms earlier indicators of a relatively low rate of tidal dissipation in the Paleogene. Newfoundland Ridge drift sediments thus enable a reliable reconstruction of astronomical components at the limit of validity of current astronomical calculations, extracted from geologic data, providing a new target for the next generation of astronomical calculations. -
The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.