Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 25, 2026
- 
            Research in Responsible AI has developed a range of principles and practices to ensure that machine learning systems are used in a manner that is ethical and aligned with human values. However, a critical yet often neglected aspect of ethical ML is the ethical implications that appear when designing evaluations of ML systems. For instance, teams may have to balance a trade-off between highly informative tests to ensure downstream product safety, with potential fairness harms inherent to the implemented testing procedures. We conceptualize ethics-related concerns in standard ML evaluation techniques. Specifically, we present a utility framework, characterizing the key trade-off in ethical evaluation as balancing information gain against potential ethical harms. The framework is then a tool for characterizing challenges teams face, and systematically disentangling competing considerations that teams seek to balance. Differentiating between different types of issues encountered in evaluation allows us to highlight best practices from analogous domains, such as clinical trials and automotive crash testing, which navigate these issues in ways that can offer inspiration to improve evaluation processes in ML. Our analysis underscores the critical need for development teams to deliberately assess and manage ethical complexities that arise during the evaluation of ML systems, and for the industry to move towards designing institutional policies to support ethical evaluations.more » « less
- 
            Multiverse analyses involve conducting all combinations of reasonable choices in a data analysis process. A reader of a study containing a multiverse analysis might question—are all the choices included in the multiverse reasonable and equally justifiable? How much do results vary if we make different choices in the analysis process? In this work, we identify principles for validating the composition of, and interpreting the uncertainty in, the results of a multiverse analysis. We present Milliways, a novel interactive visualisation system to support principled evaluation of multiverse analyses. Milliways provides interlinked panels presenting result distributions, individual analysis composition, multiverse code specification, and data summaries. Milliways supports interactions to sort, filter and aggregate results based on the analysis specification to identify decisions in the analysis process to which the results are sensitive. To represent the two qualitatively different types of uncertainty that arise in multiverse analyses—probabilistic uncertainty from estimating unknown quantities of interest such as regression coefficients, and possibilistic uncertainty from choices in the data analysis—Milliways uses consonance curves and probability boxes. Through an evaluative study with five users familiar with multiverse analysis, we demonstrate how Milliways can support multiverse analysis tasks, including a principled assessment of the results of a multiverse analysis.more » « less
- 
            Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches. Furthermore, it discusses different perspectives to the following questions: where do the greatest opportunities lie for automation in scientific practice?; What are the current bottlenecks of automating scientific practice?; and What are significant ethical and practical consequences of automating scientific practice? By discussing the motivations behind automated science, analyzing the hurdles encountered, and examining its implications, this article invites researchers, policymakers, and stakeholders to navigate the rapidly evolving frontier of automated scientific practice.more » « less
- 
            We conducted a longitudinal study during the 2022 U.S. midterm elections, investigating the real-world impacts of uncertainty visualizations. Using our forecast model of the governor elections in 33 states, we created a website and deployed four uncertainty visualizations for the election forecasts: single quantile dotplot (1-Dotplot), dual quantile dotplots (2-Dotplot), dual histogram intervals (2-Interval), and Plinko quantile dotplot (Plinko), an animated design with a physical and probabilistic analogy. Our online experiment ran from Oct. 18, 2022, to Nov. 23, 2022, involving 1,327 participants from 15 states. We use Bayesian multilevel modeling and post-stratification to produce demographically-representative estimates of people's emotions, trust in forecasts, and political participation intention. We find that election forecast visualizations can heighten emotions, increase trust, and slightly affect people's intentions to participate in elections. 2-Interval shows the strongest effects across all measures; 1-Dotplot increases trust the most after elections. Both visualizations create emotional and trust gaps between different partisan identities, especially when a Republican candidate is predicted to win. Our qualitative analysis uncovers the complex political and social contexts of election forecast visualizations, showcasing that visualizations may provoke polarization. This intriguing interplay between visualization types, partisanship, and trust exemplifies the fundamental challenge of disentangling visualization from its context, underscoring a need for deeper investigation into the real-world impacts of visualizations. Our preprint and supplements are available at https://doi.org/osf.io/ajq8f .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available