skip to main content

Search for: All records

Creators/Authors contains: "Huroyan, Vahan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When visualizing a high-dimensional dataset, dimension reduction techniques are commonly employed which provide a single 2 dimensional view of the data. We describe ENS-t-SNE: an algorithm for Embedding Neighborhoods Simultaneously that generalizes the t-Stochastic Neighborhood Embedding approach. By using different viewpoints in ENS-t-SNE’s 3D embedding, one can visualize different types of clusters within the same high-dimensional dataset. This enables the viewer to see and keep track of the different types of clusters, which is harder to do when providing multiple 2D embeddings, where corresponding points cannot be easily identified. We illustrate the utility of ENS-t-SNE with real-world applications and provide an extensive quantitative evaluation with datasets of different types and sizes. 
    more » « less
    Free, publicly-accessible full text available April 25, 2025
  2. We present a method for balancing between the Local and Global Structures ( L G S ) in graph embedding, via a tunable parame- ter. Some embedding methods aim to capture global structures, while others attempt to preserve local neighborhoods. Few methods attempt to do both, and it is not always possible to capture well both local and global information in two dimensions, which is where most graph drawing live. The choice of using a local or a global embedding for visualization depends not only on the task but also on the structure of the underly-ing data, which may not be known in advance. For a given graph, L G S aims to find a good balance between the local and global structure to preserve. We evaluate the performance of L G S with synthetic and real- world datasets and our results indicate that it is competitive with the state-of-the-art methods, using established quality metrics such as stress and neighborhood preservation. We introduce a novel quality metric, cluster distance preservation, to assess intermediate structure capture. All source-code, datasets, experiments and analysis are available online. 
    more » « less
    Free, publicly-accessible full text available January 18, 2025
  3. null (Ed.)
  4. Data analysts commonly utilize statistics to summarize large datasets. While it is often sufficient to explore only the summary statistics of a dataset (e.g., min/mean/max), Anscombe's Quartet demonstrates how such statistics can be misleading. We consider a similar problem in the context of graph mining. To study the relationships between different graph properties and summary statistics, we examine low-order non-isomorphic graphs and provide a simple visual analytics system to explore correlations across multiple graph properties. However, for larger graphs, studying the entire space quickly becomes intractable. We use different random graph generation methods to further look into the distribution of graph properties for higher order graphs and investigate the impact of various sampling methodologies. We also describe a method for generating many graphs that are identical over a number of graph properties and statistics yet are clearly different and identifiably distinct. 
    more » « less