Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Noisy Intermediate-Scale Quantum (NISQ) devices fail to produce outputs with sufficient fidelity for deep circuits with many gates today. Such devices suffer from read-out, multi-qubit gate and crosstalk noise combined with short decoherence times limiting circuit depth. This work develops a methodology to generate shorter circuits with fewer multi-qubit gates whose unitary transformations approximate the original reference one. It explores the benefit of such generated approximations under NISQ devices. Experimental results with Grover’s algorithm, multiple-control Toffoli gates, and the Transverse Field Ising Model show that such approximate circuits produce higher fidelity results than longer, theoretically precise circuits on NISQ devices, especially when the reference circuits have many CNOT gates to begin with. With this ability to fine-tune circuits, it is demonstrated that quantum computations can be performed for more complex problems on today’s devices than was feasible before, sometimes even with a gain in overall precision by up to 60%.more » « less
-
The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block opti-mization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noisy simulations, and large-size circuits on analytical models. Our technique can be applied after existing optimizations to achieve higher circuit fidelity. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compiler optimizations such as t|ket). When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits, Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation tool chain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains to further improve the circuit fidelity.more » « less
An official website of the United States government
