skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ibáñez, Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Variable harlequin frogsAtelopus variushave declined significantly throughout their range as a result of infection with the fungal pathogenBatrachochytrium dendrobatidis(Bd). The Panama Amphibian Rescue and Conservation Project maintains an ex situ population of this Critically Endangered species. We conducted a release trial with surplus captive-bredA. variusindividuals to improve our ability to monitor frog populations post-release, observe dispersal patterns after freeing them into the wild and learn about threats to released frogs, as well as to determine whether natural skin toxin defences of frogs could be restored inside mesocosms in the wild and to compare Bd dynamics in natural amphibian communities at the release site vs a non-release site. The 458 released frogs dispersed rapidly and were difficult to re-encounter unless they carried a radio transmitter. No frog was seen after 36 days following release. Thirty frogs were fitted with radio transmitters and only half were trackable by day 10. Tetrodotoxin was not detected in the skins of the frogs inside mesocosms for up to 79 days. Bd loads in other species present at sites were high prior to release and decreased over time in a pattern probably driven by weather. No differences were observed in Bd prevalence between the release and non-release sites. This trial showed that refinements of our methods and approaches are required to study captiveAtelopusfrogs released into wild conditions. We recommend continuing release trials of captive-bred frogs with post-release monitoring methods, using an adaptive management framework to advance the field of amphibian reintroduction ecology. 
    more » « less
  2. ABSTRACT Studying declining and rare species is inherently challenging, particularly when the cause of rarity is emerging infectious diseases (EIDs). Tracking changes in the distribution of pathogens that cause EIDs, and the species made scarce by them, is necessary for conservation efforts, but it is often a time and resource intensive task. Here, we demonstrate how using environmental DNA (eDNA) to detect rare species—and the pathogens that threaten them—can be a powerful tool to understand disease dynamics and develop effective conservation strategies. Amphibian populations around the world have undergone rapid declines and extinctions due to the emerging fungal pathogen,Batrachochytrium dendrobatidis(Bd). We developed and validated a qPCR assay using eDNA sampling methods for some of the most imperiled amphibian species, harlequin frogs (Atelopus varius,Atelopus zeteki,andAtelopus chiriquiensis), and applied this assay in concert with a standard qPCR assay forBdin rainforest streams of Panamá. We confirmed the presence ofAtelopusat sampling locations across three regions. In addition, we used genomic analysis of eDNA samples to show thatBdin Panamá falls within the Global Panzootic Lineage, a lineage associated with disease‐induced declines. We detectedBdDNA in most of our historic sites, and its concentration in water samples correlated with stream characteristics and the pathogen load of the local amphibian community. These results suggest that some populations ofAtelopuspersist in their historic localities. They also show how eDNA analysis can be effectively used for monitoring species presence, pathogen concentrations, and the distribution and spread of pathogen lineages. EIDs are a growing threat to endangered species around the world. Simultaneous detection of rare and declining host species and their pathogens with eDNA will help to provide key insights for effective conservation management. 
    more » « less
  3. Abstract Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends. 
    more » « less
  4. Abstract Avoiding extinction in a rapidly changing environment often relies on a species’ ability to quickly adapt in the face of extreme selective pressures. In Panamá, two closely related harlequin frog species (Atelopus variusandAtelopus zeteki) are threatened with extinction due to the fungal pathogenBatrachochytrium dendrobatidis(Bd). Once thought to be nearly extirpated from Panamá,A. variushave recently been rediscovered in multiple localities across their historical range; however,A. zetekiare possibly extinct in the wild. By leveraging a unique collection of 186Atelopustissue samples collected before and after theBdoutbreak in Panama, we describe the genetics of persistence for these species on the brink of extinction. We sequenced the transcriptome and developed an exome‐capture assay to sequence the coding regions of theAtelopusgenome. Using these genetic data, we evaluate the population genetic structure of historicalA. variusandA. zetekipopulations, describe changes in genetic diversity over time, assess the relationship between contemporary and historical individuals, and test the hypothesis that someA. variuspopulations have rapidly evolved to resist or tolerateBdinfection. We found a significant decrease in genetic diversity in contemporary (compared to historical)A. variuspopulations. We did not find strong evidence of directional allele frequency change or selection forBdresistance genes, but we uncovered a set of candidate genes that warrant further study. Additionally, we found preliminary evidence of recent migration and gene flow in one of the largest persistingA. variuspopulations in Panamá, suggesting the potential for genetic rescue in this system. Finally, we propose that previous conservation units should be modified, as clear genetic breaks do not exist beyond the local population level. Our data lay the groundwork for genetically informed conservation and advance our understanding of how imperiled species might be rescued from extinction. 
    more » « less