skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ikeda, Kyoko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract During the Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE) field campaign, cloud-top generating cells were frequently observed in the very high-resolution W-band airborne cloud radar data. This study examines multiple flight segments from three SNOWIE cases that exhibited cloud-top generating cells structures, focusing on the in situ measurements inside and outside these cells to characterize the microphysics of these cells. The observed generating cells in these three cases occurred in cloud tops of −15° to −30°C, with and without overlying cloud layers, but always with shallow layers of atmospheric instability observed at cloud top. The results also indicate that liquid water content, vertical velocity, and drizzle and ice crystal concentrations are greater inside the generating cells compared to the adjacent portions of the cloud. The generating cells were predominantly <500 m in horizontal width and frequently exhibited drizzle drops coexisting with ice. The particle imagery indicates that ice particle habits included plates, columns, and rimed and irregular crystals, likely formed via primary ice nucleation mechanisms. Understanding the sources of natural ice formation is important to understanding precipitation formation in winter orographic clouds, and is especially relevant for clouds that may be targeted for glaciogenic cloud seeding as well as to improve model representation of these clouds. Significance StatementThis study presents the characteristics of cloud-top generating cells in winter orographic clouds, and documents that fine-scale generating cells are ubiquitous in clouds over complex terrain in addition to having been observed in other types of clouds. The generating cells exhibited enhanced concentrations of larger drizzle and ice particles, which suggests the environments of these fine-scale features promote ice formation and growth. The source of ice formation in winter clouds is critical to understanding and modeling the precipitation formation process. Given the ubiquity of cloud-top generating cells in many types of clouds around the world, this study further motivates the need to investigate methods for representing subgrid-scale environments to improve ice formation in numerical models. 
    more » « less
  2. Abstract Snowpack melting is a crucial water resource for local ecosystems, agriculture, and hydropower in the Intermountain West of the United States. Glaciogenic seeding, a method widely used in mountain regions to enhance precipitation, has been subject to numerous field studies aiming to understand and validate this mechanism. However, investigating precipitation distribution and amounts in mountainous areas is complicated due to the intricate interplay of synoptic circulation patterns and local complex topography. These interactions significantly influence microphysical processes, ultimately affecting the amount and distribution of surface precipitation. To address these challenges, this study leverages Weather Research and Forecasting (WRF) Model simulations, providing high-resolution (900 m), hourly data, spanning the Payette region of Idaho from January to March 2017. We applied the self-organizing map approach to categorize the most representative synoptic circulation patterns and conducted a multiscale analysis to explore their associated environmental conditions and microphysical processes, aiming to assess the cloud seeding potential. The analysis identified four primary synoptic patterns: cold zonal flow (CZF), cold southwesterly flow (CSWF), warm zonal flow (WZF), and warm southwesterly flow (WSWF), constituting 21.3%, 23.1%, 30.0%, and 25.5%, respectively. CSWF and WSWF demonstrated efficiency in generating natural precipitation. These patterns were characterized by abundant supercooled liquid water (SLW) and ice particles, facilitating cloud droplet growth through seeder–feeder processes. On the other hand, CZF exhibited the least SLW and limited potential for cloud seeding, while WZF displayed a lower ice water content but substantial SLW in the diffusion/dendritic growth layer, suggesting a favorable scenario for cloud seeding. Significance StatementUnderstanding snowfall amounts and distribution in the mountains and how it is linked to topography, synoptic flow, and microphysical processes will help in the development of effective strategies for cloud seeding operations, managing runoff, reservoir, and mitigating flood risks, garnering substantial interest from stakeholders and the government agencies. 
    more » « less
  3. Abstract In Part II, two classes of vertical motions, fixed (associated with vertically propagating gravity waves tied to flow over topography) and transient (associated primarily with vertical wind shear and conditional instability within passing weather systems), were diagnosed over the Payette River basin of Idaho during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). This paper compares vertical motions retrieved from airborne Doppler radial velocity measurements with those from a 900-m-resolution model simulation to determine the impact of transient vertical motions on trajectories of ice particles initiated by airborne cloud seeding. An orographic forcing index, developed to compare vertical motion fields retrieved from the radar with the model, showed that fixed vertical motions were well resolved by the model while transient vertical motions were not. Particle trajectories were calculated for 75 cross-sectional pairs, each differing only by the observed and modeled vertical motion field. Wind fields and particle terminal velocities were otherwise identical in both trajectories so that the impact of transient vertical circulations on particle trajectories could be isolated. In 66.7% of flight-leg pairs, the distance traveled by particles in the model and observations differed by less than 5 km with transient features having minimal impact. In 9.3% of the pairs, model and observation trajectories landed within the ideal target seeding elevation range (>2000 m), whereas, in 77.3% of the pairs, both trajectories landed below the ideal target elevation. Particles in the observations and model descended into valleys on the mountains’ lee sides in 94.2% of cases in which particles traveled less than 37 km. 
    more » « less
  4. Abstract The western United States region, an economic and agricultural powerhouse, is highly dependent on winter snowpack from the mountain west. Coupled with increasing water and renewable electricity demands, the predictability and viability of snowpack resources in a changing climate are becoming increasingly important. In Idaho, specifically, up to 75% of the state’s electricity production comes from hydropower, which is dependent on the timing and volume of spring snowmelt. While we know that 1 April snowpack is declining from SNOTEL observations and is expected to continue to decline as indicated by GCM predictions, our ability to understand the variability of snowfall accumulation and distribution at the regional level is less robust. In this paper, we analyze snowfall events using 0.9-km-resolution WRF simulations to understand the variability of snowfall accumulation and distribution in the mountains of Idaho between 1 October 2016 and 31 April 2017. Various characteristics of snowfall events throughout the season are evaluated, including the spatial coverage, event durations, and snowfall rates, along with the relationship between cloud microphysical variables—particularly liquid and ice water content—on snowfall amounts. Our findings suggest that efficient snowfall conditions—for example, higher levels of elevated supercooled liquid water—can exist throughout the winter season but are more impactful when surface temperatures are near or below freezing. Inefficient snowfall events are common, exceeding 50% of the total snowfall events for the year, with some of those occurring in peak winter. For such events, glaciogenic cloud seeding could make a significant impact on snowpack development and viability in the region. Significance StatementThe purpose and significance of this study is to better understand the variability of snowfall event accumulation and distribution in the Payette Mountains region of Idaho as it relates to the local topography, the drivers of snowfall events, the cloud microphysical properties, and what constitutes an efficient or inefficient snowfall event (i.e., its ability to convert atmospheric liquid water into snowfall). As part of this process, we identify how many snowfall events in a season are inefficient to determine the number of snowfall events in a season that are candidates for enhancement by glaciogenic cloud seeding. 
    more » « less
  5. Abstract A dry-air intrusion induced by the tropopause folding split the deep cloud into two layers resulting in a shallow orographic cloud with a supercooled liquid cloud top at around −15°C and an ice cloud above it on 19 January 2017 during the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE). The airborne AgI seeding of this case was simulated by the WRF Weather Modification (WRF-WxMod) Model with different configurations. Simulations at different grid spacing, driven by different reanalysis data, using different model physics were conducted to explore the ability of WRF-WxMod to capture the properties of natural and seeded clouds. The detailed model–observation comparisons show that the simulation driven by ERA5 data, using Thompson–Eidhammer microphysics with 30% of the CCN climatology, best captured the observed cloud structure and supercooled liquid water properties. The ability of the model to correctly capture the wind field was critical for successful simulation of the seeding plume locations. The seeding plume features and ice number concentrations within them from the large-eddy simulations (LES) are in better agreement with observations than non-LES runs mostly due to weaker AgI dispersion associated with the finer grid spacing. Seeding effects on precipitation amount and impacted areas from LES seeding simulations agreed well with radar-derived values. This study shows that WRF-WxMod is able to simulate and quantify observed features of natural and seeded clouds given that critical observations are available to validate the model. Observation-constrained seeding ensemble simulations are proposed to quantify the AgI seeding impacts on wintertime orographic clouds. Significance Statement Recent observational work has demonstrated that the impact of airborne glaciogenic seeding of orographic supercooled liquid clouds is detectable and can be quantified in terms of the extra ground precipitation. This study aims, for the first time, to simulate this seeding impact for one well-observed case. The stakes are high: if the model performs well in this case, then seasonal simulations can be conducted with appropriate configurations after validations against observations, to determine the impact of a seeding program on the seasonal mountain snowpack and runoff, with more fidelity than ever. High–resolution weather simulations inherently carry uncertainty. Within the envelope of this uncertainty, the model compares very well to the field observations. 
    more » « less
  6. Climate change and population growth have increased demand for water in arid regions. For over half a century, cloud seeding has been evaluated as a technology to increase water supply; statistical approaches have compared seeded to nonseeded events through precipitation gauge analyses. Here, a physically based approach to quantify snowfall from cloud seeding in mountain cloud systems is presented. Areas of precipitation unambiguously attributed to cloud seeding are isolated from natural precipitation (<1 mm h−1). Spatial and temporal evolution of precipitation generated by cloud seeding is then quantified using radar observations and snow gauge measurements. This study uses the approach of combining radar technology and precipitation gauge measurements to quantify the spatial and temporal evolution of snowfall generated from glaciogenic cloud seeding of winter mountain cloud systems and its spatial and temporal evolution. The results represent a critical step toward quantifying cloud seeding impact. For the cases presented, precipitation gauges measured increases between 0.05 and 0.3 mm as precipitation generated by cloud seeding passed over the instruments. The total amount of water generated by cloud seeding ranged from 1.2 × 105m3(100 ac ft) for 20 min of cloud seeding, 2.4 × 105m3(196 ac ft) for 86 min of seeding to 3.4 x 105m3(275 ac ft) for 24 min of cloud seeding. 
    more » « less
  7. Abstract Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We conduct and evaluate high‐resolution (4‐km) snowpack simulations over the western United States (WUS) mountains in Water Year 2013 using the Noah with multi‐parameterization (Noah‐MP) land surface model driven by precipitation forcing from convection‐permitting (4‐km) Weather Research and Forecasting (WRF) modeling and four widely used high‐resolution datasets that are derived from statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount among these five datasets, particularly over the western and northern portions of WUS mountains, significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed precipitation patterns and results in an overall best‐performed SWE and SD in the western and northern portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently underestimate precipitation, causing significant negative biases in SWE and SD, among which the results driven by the WRF precipitation show an average performance. Further analysis reveals systematic positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to improve the Noah‐MP snowpack physics. This study highlights that convection‐permitting modeling with proper configurations can have added values in providing decent precipitation for high‐resolution snowpack simulations over the WUS mountains in a typical ENSO‐neutral year, particularly over observation‐scarce regions. 
    more » « less