skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ioannidis, Stratis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A recent work introduces the problem of learning set functions from data generated by a so-called optimal subset oracle. Their approach approximates the underlying utility function with an energy-based model, whose parameters are estimated via mean-field variational inference. This approximation reduces to fixed point iterations; however, as the number of iterations increases, automatic differentiation quickly becomes computationally prohibitive due to the size of the Jacobians that are stacked during backpropagation. We address this challenge with implicit differentiation and examine the convergence conditions for the fixed-point iterations. We empirically demonstrate the efficiency of our method on synthetic and real-world subset selection applications including product recommendation, set anomaly detection and compound selection tasks. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. Free, publicly-accessible full text available December 25, 2025
  3. Free, publicly-accessible full text available December 10, 2025
  4. We study monotone submodular maximization under general matroid constraints in the online setting. We prove that online optimization of a large class of submodular functions, namely, threshold potential functions, reduces to online convex optimization (OCO). This is precisely because functions in this class admit a concave relaxation; as a result, OCO policies, coupled with an appropriate rounding scheme, can be used to achieve sublinear regret in the combinatorial setting. We also show that our reduction extends to many different versions of the online learning problem, including the dynamic regret, bandit, and optimistic-learning settings. 
    more » « less
  5. We study an online caching problem in which requests can be served by a local cache to avoid retrieval costs from a remote server. The cache can update its state after a batch of requests and store an arbitrarily small fraction of each file. We study no-regret algorithms based on Online Mirror Descent (OMD) strategies. We show that bounds for the regret crucially depend on the diversity of the request process, provided by the diversity ratio R/h , where R is the size of the batch and h is the maximum multiplicity of a request in a given batch. We characterize the optimality of OMD caching policies w.r.t. regret under different diversity regimes. We also prove that, when the cache must store the entire file, rather than a fraction, OMD strategies can be coupled with a randomized rounding scheme that preserves regret guarantees, even when update costs cannot be neglected. We provide a formal characterization of the rounding problem through optimal transport theory, and moreover we propose a computationally efficient randomized rounding scheme. 
    more » « less