- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Jagt, Declan (3)
-
Peet, Matthew (3)
-
Jagt, Declan S. (2)
-
Peet, Matthew M. (2)
-
Seiler, Peter (2)
-
Shivakumar, Sachin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jagt, Declan; Seiler, Peter; Peet, Matthew (, Proceedings of the IEEE Conference on Decision Control)It has recently been shown that the evolution of a linear Partial Differential Equation (PDE) can be more conveniently represented in terms of the evolution of a higher spatial derivative of the state. This higher spatial derivative (termed the `fundamental state') lies in $$L_2$$ - requiring no auxiliary boundary conditions or continuity constraints. Such a representation (termed a Partial Integral Equation or PIE) is then defined in terms of an algebra of bounded integral operators (termed Partial Integral (PI) operators) and is constructed by identifying a unitary map from the fundamental state to the state of the original PDE. Unfortunately, when the PDE is nonlinear, the dynamics of the associated fundamental state are no longer parameterized in terms of PI operators. However, in this paper we show that such dynamics can be compactly represented using a new tensor algebra of partial integral operators acting on the tensor product of the fundamental state. We further show that this tensor product of the fundamental state forms a natural distributed equivalent of the monomial basis used in representation of polynomials on a finite-dimensional space. This new representation is then used to provide a simple SDP-based Lyapunov test of stability of quadratic PDEs. The test is applied to three illustrative examples of quadratic PDEs.more » « less
-
Jagt, Declan S.; Peet, Matthew M. (, IEEE Control Systems Letters)
-
Jagt, Declan S.; Peet, Matthew M. (, Proceedings of the IEEE Conference on Decision Control)
-
Jagt, Declan; Shivakumar, Sachin; Seiler, Peter; Peet, Matthew (, IEEE Control Systems Letters)
An official website of the United States government

Full Text Available