skip to main content


Search for: All records

Creators/Authors contains: "Jankowski, Kathi Jo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tropical forest fragmentation from agricultural expansion alters the microclimatic conditions of the remaining forests, with effects on vegetation structure and function. However, little is known about how the functional trait variability within and among tree species in fragmented landscapes influence and facilitate species’ persistence in these new environmental conditions. Here, we assessed potential changes in tree species’ functional traits in riparian forests within six riparian forests in cropland catchments (Cropland) and four riparian forests in forested catchments (Forest) in southern Amazonia. We sampled 12 common functional traits of 123 species across all sites: 64 common to both croplands and forests, 33 restricted to croplands, and 26 restricted to forests. We found that forest-restricted species had leaves that were thinner, larger, and with higher phosphorus (P) content, compared to cropland-restricted ones. Tree species common to both environments showed higher intraspecific variability in functional traits, with leaf thickness and leaf P concentration varying the most. Species turnover contributed more to differences between forest and cropland environments only for the stem-specific density trait. We conclude that the intraspecific variability of functional traits (leaf thickness, leaf P, and specific leaf area) facilitates species persistence in riparian forests occurring within catchments cleared for agricultural expansion in Amazonia. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. null (Ed.)
  3. null (Ed.)
    Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function in these areas of rapid tropical agricultural development has not been well studied. To address these gaps, we conducted a study in the lowland Brazilian Amazon, an area undergoing rapid cropland expansion, to assess the effects of land use change on organic matter dynamics (OM), ecosystem metabolism, and nutrient concentrations and uptake (nitrate and phosphate) in 11 first order streams draining forested (n = 4) or cropland (n = 7) watersheds with intact riparian forests. We found that streams had similar terrestrial litter inputs, but OM biomass was lower in cropland streams. Gross primary productivity was low and not different between land uses, but ecosystem respiration and net ecosystem production showed greater seasonality in cropland streams. Although we found no difference in stream concentrations of dissolved nutrients, phosphate uptake exceeded nitrate uptake in all streams and was higher in cropland than forested streams. This indicates that streams will be more retentive of phosphorus than nitrogen and that if fertilizer nitrogen reaches streams, it will be exported in stream networks. Overall, we found relatively subtle differences in stream function, indicating that riparian buffers have thus far provided protection against major functional shifts seen in other systems. However, the changes we did observe were linked to watershed scale shifts in hydrology, water temperature, and light availability resulting from watershed deforestation. This has implications for the conservation of tens of thousands of stream kilometers across the expanding Amazon cropland region. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Winters are changing rapidly across the globe but the implications for aquatic productivity and food webs are not well understood. In addition, the degree to which winter dynamics in aquatic systems respond to large‐scale climate versus ecosystem‐level factors is unclear but important for understanding and managing potential changes. We used a unique winter data set from the Upper Mississippi River System to explore spatial and temporal patterns in phytoplankton biomass (chlorophylla, CHL) and associated environmental covariates across 25 years and ∼1,500 river km. To assess the role of regional climate versus site‐specific drivers of winter CHL, we evaluated whether there were coherent long‐term CHL dynamics from north to south and across lotic‐lentic areas. We then estimated the degree to which these patterns were associated with climate variability (i.e., the Multivariate El Nino‐Southern Oscillation Index), winter severity (freezing degree days), river discharge, or site‐specific environmental variables (ice depth, snow depth, and nutrient concentrations). We found that winter CHL was typically highest in ice‐free reaches and backwater lakes, occasionally exceeding summer values. We did not find highly synchronous CHL dynamics across the basin, but instead show that temporal trends were independent among river reaches and lotic‐lentic areas of the river. Moreover, after accounting for these spatial dynamics, we found that CHL was most responsive to winter air temperature, being consistently higher in years with warmer winters across the basin. These results indicate that although productivity dynamics are highly dynamic within large river ecosystems, changes in the duration and severity of winter may uniformly increase wintertime productivity.

     
    more » « less
  6. Abstract

    Recent advances in high‐frequency environmental sensing and statistical approaches have greatly expanded the breadth of knowledge regarding aquatic ecosystem metabolism—the measurement and interpretation of gross primary productivity (GPP) and ecosystem respiration (ER). Aquatic scientists are poised to take advantage of widely available datasets and freely‐available modeling tools to apply functional information gained through ecosystem metabolism to help inform environmental management. Historically, several logistical and conceptual factors have limited the widespread application of metabolism in management settings. Benefitting from new instrumental and modeling tools, it is now relatively straightforward to extend routine monitoring of dissolved oxygen (DO) to dynamic measures of aquatic ecosystem function (GPP and ER) and key physical processes such as gas exchange with the atmosphere (G). We review the current approaches for using DO data in environmental management with a focus on the United States, but briefly describe management frameworks in Europe and Canada. We highlight new applications of diel DO data and metabolism in regulatory settings and explore how they can be applied to managing and monitoring ecosystems. We then review existing data types and provide a short guide for implementing field measurements and modeling of ecosystem metabolic processes using currently available tools. Finally, we discuss research needed to overcome current conceptual limitations of applying metabolism in management settings. Despite challenges associated with modeling metabolism in rivers and lakes, rapid developments in this field have moved us closer to utilizing real‐time estimates of GPP, ER, and G to improve the assessment and management of environmental change.

    This article is categorized under:

    Water and Life > Nature of Freshwater Ecosystems

    Water and Life > Conservation, Management, and Awareness

     
    more » « less
  7. Abstract

    Ice cover plays a critical role in physical, biogeochemical, and ecological processes in lakes. Despite its importance, winter limnology remains relatively understudied. Here, we provide a primer on the predominant drivers of freshwater lake ice cover and the current methodologies used to study lake ice, including in situ and remote sensing observations, physical based models, and experiments. We highlight opportunities for future research by integrating these four disciplines to address key knowledge gaps in our understanding of lake ice dynamics in changing winters. Advances in technology, data integration, and interdisciplinary collaboration will allow the field to move toward developing global forecasts of lake ice cover for small to large lakes across broad spatial and temporal scales, quantifying ice quality and ice thickness, moving from binary to continuous ice records, and determining how winter ice conditions and quality impact ecosystem processes in lakes over winter. Ultimately, integrating disciplines will improve our ability to understand the impacts of changing winters on lake ice.

     
    more » « less