skip to main content

Search for: All records

Creators/Authors contains: "Janout, Markus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 14, 2025
  2. Mesoscale eddies are important to many aspects of the dynamics of the Arctic Ocean. Among others, they maintain the halocline and interact with the Atlantic Water circumpolar boundary current through lateral eddy fluxes and shelf-basin exchanges. Mesoscale eddies are also important for transporting biological material and for modifying sea ice distribution. Here, we review what is known about eddies and their impacts in the Arctic Ocean in the context of rapid climate change. Eddy kinetic energy (EKE) is a proxy for mesoscale variability in the ocean due to eddies. We present the first quantification of EKE from moored observations across the entire Arctic Ocean and compare those results to output from an eddy resolving numerical model. We show that EKE is largest in the northern Nordic Seas/Fram Strait and it is also elevated along the shelf break of the Arctic Circumpolar Boundary Current, especially in the Beaufort Sea. In the central basins, EKE is 100–1,000 times lower. Generally, EKE is stronger when sea ice concentration is low versus times of dense ice cover. As sea ice declines, we anticipate that areas in the Arctic Ocean where conditions typical of the North Atlantic and North Pacific prevail will increase. We conclude that the future Arctic Ocean will feature more energetic mesoscale variability. 
    more » « less
  3. Abstract. Systematic long-term studies on ecosystem dynamics are largely lacking from the East Antarctic Southern Ocean, although it is well recognized that they are indispensable to identify the ecological impacts and risks of environmental change. Here, we present a framework for establishing a long-term cross-disciplinary study on decadal timescales. We argue that the eastern Weddell Sea and the adjacent sea to the east, off Dronning Maud Land, is a particularly well suited area for such a study, since it is based on findings from previous expeditions to this region. Moreover, since climate and environmental change have so far been comparatively muted in this area, as in the eastern Antarctic in general, a systematic long-term study of its environmental and ecological state can provide a baseline of the current situation, which will be important for an assessment of future changes from their very onset, with consistent and comparable time series data underpinning and testing models and their projections. By establishing an Integrated East Antarctic Marine Research (IEAMaR) observatory, long-term changes in ocean dynamics, geochemistry, biodiversity, and ecosystem functions and services will be systematically explored and mapped through regular autonomous and ship-based synoptic surveys. An associated long-term ecological research (LTER) programme, including experimental and modelling work, will allow for studying climate-driven ecosystem changes and interactions with impacts arising from other anthropogenic activities. This integrative approach will provide a level of long-term data availability and ecosystem understanding that are imperative to determine, understand, and project the consequences of climate change and support a sound science-informed management of future conservation efforts in the Southern Ocean. 
    more » « less
  4. Abstract

    Tidal and wind-driven near-inertial currents play a vital role in the changing Arctic climate and the marine ecosystems. We compiled 429 available moored current observations taken over the last two decades throughout the Arctic to assemble a pan-Arctic atlas of tidal band currents. The atlas contains different tidal current products designed for the analysis of tidal parameters from monthly to inter-annual time scales. On shorter time scales, wind-driven inertial currents cannot be analytically separated from semidiurnal tidal constituents. Thus, we include 10–30 h band-pass filtered currents, which include all semidiurnal and diurnal tidal constituents as well as wind-driven inertial currents for the analysis of high-frequency variability of ocean dynamics. This allows for a wide range of possible uses, including local case studies of baroclinic tidal currents, assessment of long-term trends in tidal band kinetic energy and Arctic-wide validation of ocean circulation models. This atlas may also be a valuable tool for resource management and industrial applications such as fisheries, navigation and offshore construction.

    more » « less
  5. Abstract A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m −2 in 2007–08 to >10 W m −2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback. 
    more » « less
  6. null (Ed.)
    Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property and material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain. 
    more » « less
  7. Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean. 
    more » « less
  8. Abstract

    This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along‐track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross‐slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average(108) J m−2per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2in the deep basin, and 3.7 W m−2above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near‐bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer‐warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice‐free Arctic Ocean in summer.

    more » « less
  9. Abstract

    A 15‐year (2004–2018) record of mooring observations from the upper 50 m of the ocean in the eastern Eurasian Basin reveals increased current speeds and vertical shear, associated with an increasing coupling between wind, ice, and the upper ocean over 2004–2018, particularly in summer. Substantial increases in current speeds and shears in the upper 50 m are dominated by a two times amplification of currents in the semidiurnal band, which includes tides and wind‐forced near‐inertial oscillations. For the first time the strengthened upper ocean currents and shear are observed to coincide with weakening stratification. This coupling links the Atlantic Water heat to the sea ice, a consequence of which would be reducing regional sea ice volume. These results point to a new positive feedback mechanism in which reduced sea ice extent facilitates more energetic inertial oscillations and associated upper‐ocean shear, thus leading to enhanced ventilation of the Atlantic Water.

    more » « less