skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jee, Kangkook"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present PROVNINJA, a framework designed to generate adversarial attacks that aim to elude provenance-based Machine Learning (ML) security detectors. PROVNINJA is designed to identify and craft adversarial attack vectors that statistically mimic and impersonate system programs. Leveraging the benign execution profile of system processes commonly observed across a multitude of hosts and networks, our research proposes an efficient and effective method to probe evasive alternatives and devise stealthy attack vectors that are difficult to distinguish from benign system behaviors. PROVNINJA's suggestions for evasive attacks, originally derived in the feature space, are then translated into system actions, leading to the realization of actual evasive attack sequences in the problem space. When evaluated against State-of-The-Art (SOTA) detector models using two realistic Advanced Persistent Threat (APT) scenarios and a large collection of fileless malware samples, PROVNINJA could generate and realize evasive attack variants, reducing the detection rates by up to 59%. We also assessed PROVNINJA under varying assumptions on adversaries' knowledge and capabilities. While PROVNINJA primarily considers the black-box model, we also explored two contrasting threat models that consider blind and whitebox attack scenarios. 
    more » « less
    Free, publicly-accessible full text available August 31, 2024
  2. We present PROVNINJA, a framework designed to generate adversarial attacks that aim to elude provenance-based Machine Learning (ML) security detectors. PROVNINJA is designed to identify and craft adversarial attack vectors that statistically mimic and impersonate system programs. Leveraging the benign execution profile of system processes commonly observed across a multitude of hosts and networks, our research proposes an efficient and effective method to probe evasive alternatives and devise stealthy attack vectors that are difficult to distinguish from benign system behaviors. PROVNINJA's suggestions for evasive attacks, originally derived in the feature space, are then translated into system actions, leading to the realization of actual evasive attack sequences in the problem space. When evaluated against State-of-The-Art (SOTA) detector models using two realistic Advanced Persistent Threat (APT) scenarios and a large collection of fileless malware samples, PROVNINJA could generate and realize evasive attack variants, reducing the detection rates by up to 59%. We also assessed PROVNINJA under varying assumptions on adversaries' knowledge and capabilities. While PROVNINJA primarily considers the black-box model, we also explored two contrasting threat models that consider blind and white-box attack scenarios. 
    more » « less
    Free, publicly-accessible full text available August 11, 2024
  3. We present PROVNINJA, a framework designed to generate adversarial attacks that aim to elude provenance-based Machine Learning (ML) security detectors. PROVNINJA is designed to identify and craft adversarial attack vectors that statistically mimic and impersonate system programs. Leveraging the benign execution profile of system processes commonly observed across a multitude of hosts and networks, our research proposes an efficient and effective method to probe evasive alternatives and devise stealthy attack vectors that are difficult to distinguish from benign system behaviors. PROVNINJA's suggestions for evasive attacks, originally derived in the feature space, are then translated into system actions, leading to the realization of actual evasive attack sequences in the problem space. When evaluated against State-of-The-Art (SOTA) detector models using two realistic Advanced Persistent Threat (APT) scenarios and a large collection of fileless malware samples, PROVNINJA could generate and realize evasive attack variants, reducing the detection rates by up to 59%. We also assessed PROVNINJA under varying assumptions on adversaries' knowledge and capabilities. While PROVNINJA primarily considers the black-box model, we also explored two contrasting threat models that consider blind and white-box attack scenarios. 
    more » « less
    Free, publicly-accessible full text available August 9, 2024