skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeff, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2026
  2. Hands-on experimental experience with quantum systems in the undergraduate physics curriculum provides students with a deeper understanding of quantum physics and equips them for the fast-growing quantum science industry. Here, we present an experimental apparatus for performing quantum experiments with single nitrogen-vacancy (NV) centers in diamond. This apparatus is capable of basic experiments such as single-qubit initialization, rotation, and measurement, as well as more advanced experiments investigating electron–nuclear spin interactions. We describe the basic physics of the NV center and give examples of potential experiments that can be performed with this apparatus. We also discuss the options and inherent trade-offs associated with the choice of diamond samples and hardware. The apparatus described here enables students to write their own experimental control and data analysis software from scratch, all within a single semester of a typical lab course, as well as to inspect the optical components and inner workings of the apparatus. We hope that this work can serve as a standalone resource for any institution that would like to integrate a quantum instructional lab into its undergraduate physics and engineering curriculum. 
    more » « less
  3. Superhydrophobic (SHPo) surfaces can capture a thin layer of air called a plastron under water to reduce skin friction. Although a ~30 % drag reduction has been recently reported with longitudinal micro-trench SHPo surfaces under a boat and in a towing tank, the results lacked the consistency to establish a clear trend. Designed based on Yuet al.(J. Fluid Mech, vol. 962, 2023, A9), this work develops and tests a series of high-performance SHPo surface coupons that can sustain a pinned plastron underneath a passenger motorboat revamped to reach 14 knots. Importantly, plastrons in a pinned state, not just their existence, are confirmed during flow experiments for the first time. All the drag-reduction data measured on different longitudinal micro-trenches are found to collapse if plotted against slip length in wall units. In comparison, aligned posts and transverse trenches show less and little drag reduction, respectively, confirming the adverse effect of the spanwise slip in turbulent flows. This report not only verifies SHPo surfaces can provide a consistent drag reduction at high speeds in open sea but also shows that one may predict the amount of drag reduction in turbulent flows using the physical slip length obtained for Stokes flows. 
    more » « less
  4. Highly excited Rydberg states and their interactions play an important role in quantum computing and simulation. These properties can be predicted accurately for alkali atoms with simple Rydberg level structures. However, an extension of these methods to more complex atoms such as alkaline-earth atoms has not been demonstrated or experimentally validated. Here, we present multichannel quantum defect models for highly excited Yb 174 and Yb 171 Rydberg states with L 2 . The models are developed using a combination of existing literature data and new, high-precision laser and microwave spectroscopy in an atomic beam, and validated by detailed comparison with experimentally measured Stark shifts and magnetic moments. We then use these models to compute interaction potentials between two Yb atoms, and find excellent agreement with direct measurements in an optical tweezer array. From the computed interaction potential, we identify an anomalous Förster resonance that likely degraded the fidelity of previous entangling gates in Yb 171 using F = 3 / 2 Rydberg states. We then identify a more suitable F = 1 / 2 state, and achieve a state-of-the-art controlled- gate fidelity of F = 0.994 ( 1 ) , with the remaining error fully explained by known sources. This work establishes a solid foundation for the continued development of quantum computing, simulation, and entanglement-enhanced metrology with Yb neutral atom arrays. Published by the American Physical Society2025 
    more » « less
  5. We study the instantaneous inference of an unbounded planar flow from sparse noisy pressure measurements. The true flow field comprises one or more regularized point vortices of various strength and size. We interpret the true flow’s measurements with a vortex estimator, also consisting of regularized vortices, and attempt to infer the positions and strengths of this estimator assuming little prior knowledge. The problem often has several possible solutions, many due to a variety of symmetries. To deal with this ill-posedness and to quantify the uncertainty, we develop the vortex estimator in a Bayesian setting. We use Markov-chain Monte Carlo and a Gaussian mixture model to sample and categorize the probable vortex states in the posterior distribution, tailoring the prior to avoid spurious solutions. Through experiments with one or more true vortices, we reveal many aspects of the vortex inference problem. With fewer sensors than states, the estimator infers a manifold of equally-possible states. Using one more sensor than states ensures that no cases of rank deficiency arise. Uncertainty grows rapidly with distance when a vortex lies outside of the vicinity of the sensors. Vortex size cannot be reliably inferred, but the position and strength of a larger vortex can be estimated with a much smaller one. In estimates of multiple vortices their individual signs are discernible because of the non-linear coupling in the pressure. When the true vortex state is inferred from an estimator of fewer vortices, the estimate approximately aggregates the true vortices where possible. 
    more » « less
  6. The requirements for fault-tolerant quantum error correction can be simplified by leveraging structure in the noise of the underlying hardware. In this work, we identify a new type of structured noise motivated by neutral-atom qubits, biased erasure errors, which arises when qubit errors are dominated by detectable leakage from only one of the computational states of the qubit. We study the performance of this model using gate-level simulations of the XZZX surface code. Using the predicted erasure fraction and bias of metastable 171Yb qubits, we find a threshold of 8.2% for two-qubit gate errors, which is 1.9 times higher than the threshold for unbiased erasures and 7.5 times higher than the threshold for depolarizing errors. Surprisingly, the improved threshold is achieved without bias-preserving controlled-not gates and, instead, results from the lower noise entropy in this model. We also introduce an XZZX cluster state construction for measurement-based error correction, hybrid fusion, that is optimized for this noise model. By combining fusion operations and deterministic entangling gates, this construction preserves the intrinsic symmetry of the XZZX code, leading to a higher threshold of 10.3% and enabling the use of rectangular codes with fewer qubits. We discuss a potential physical implementation using a single plane of atoms and movable tweezers. 
    more » « less
  7. The development of scalable, high-fidelity qubits is a key challenge in quantum information science. Neutral atom qubits have progressed rapidly in recent years, demonstrating programmable processors1,2 and quantum simulators with scaling to hundreds of atoms3,4. Exploring new atomic species, such as alkaline earth atoms5,6,7, or combining multiple species8 can provide new paths to improving coherence, control and scalability. For example, for eventual application in quantum error correction, it is advantageous to realize qubits with structured error models, such as biased Pauli errors9 or conversion of errors into detectable erasures10. Here we demonstrate a new neutral atom qubit using the nuclear spin of a long-lived metastable state in 171Yb. The long coherence time and fast excitation to the Rydberg state allow one- and two-qubit gates with fidelities of 0.9990(1) and 0.980(1), respectively. Importantly, a large fraction of all gate errors result in decays out of the qubit subspace to the ground state. By performing fast, mid-circuit detection of these errors, we convert them into erasure errors; during detection, the induced error probability on qubits remaining in the computational space is less than 10−5. This work establishes metastable 171Yb as a promising platform for realizing fault-tolerant quantum computing. 
    more » « less
  8. Context.The star formation process leads to an increased chemical complexity in the interstellar medium. Sites associated with high-mass star and cluster formation exhibit a so-called hot core phase, characterized by high temperatures and column densities of complex organic molecules. Aims.We aim to systematically search for and identify a sample of hot cores toward the 15 Galactic protoclusters of the ALMA-IMF Large Program and investigate their statistical properties. Methods.We built a comprehensive census of hot core candidates toward the ALMA-IMF protoclusters based on the detection of two CH3OCHO emission lines at 216.1 GHz. We used the source extraction algorithm GExt2D to identify peaks of methyl formate (CH3OCHO) emission, a complex species commonly observed toward sites of star formation. We performed a cross-matching with the catalog of thermal dust continuum sources from the ALMA-IMF 1.3 mm continuum data to infer their physical properties. Results.We built a catalog of 76 hot core candidates with masses ranging from ~0.2Mto ~80M, of which 56 are new detections. A large majority of these objects, identified from methyl formate emission, are compact and rather circular, with deconvolved full width at half maximum (FWHM) sizes of ~2300 au on average. The central sources of two target fields show more extended, but still rather circular, methyl formate emission with deconvolved FWHM sizes of ~6700 au and 13 400 au. About 30% of our sample of methyl formate sources have core masses above 8Mand range in size from ~1000 au to 13 400 au, which is in line with measurements of archetypical hot cores. The origin of the CH3OCHO emission toward the lower-mass cores may be explained as a mixture of contributions from shocks or may correspond to objects in a more evolved state (i.e., beyond the hot core stage). We find that the fraction of hot core candidates increases with the core mass, suggesting that the brightest dust cores are all in the hot core phase. Conclusions.Our results suggest that most of these compact methyl formate sources are readily explained by simple symmetric models, while collective effects from radiative heating and shocks from compact protoclusters are needed to explain the observed extended CH3OCHO emission. The large fraction of hot core candidates toward the most massive cores suggests that they rapidly enter the hot core phase and that feedback effects from the forming protostar(s) impact their environment on short timescales. 
    more » « less
  9. Context. The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact H ii (UCHii ) regions were identified in SgrB2’s central hot cores, SgrB2(M) and SgrB2(N). Aims. Our aim is to characterize the properties of the H ii regions in the entire SgrB2 cloud. Comparing the H ii regions and the dust cores, we aim to depict the evolutionary stages of different parts of SgrB2. Methods. We use the Very Large Array in its A, CnB, and D configurations, and in the frequency band C (~6GHz) to observe the whole SgrB2 complex. Using ancillary VLA data at 22.4 GHz and ALMA data at 96 GHz, we calculated the physical parameters of the UCH ii regions and their dense gas environment. Results. We identify 54 UCHii regions in the 6 GHz image, 39 of which are also detected at 22.4 GHz. Eight of the 54 UCHii regions are newly discovered. The UCHii regions have radii between 0.006 pc and 0.04 pc, and have emission measure between 10 6 pc cm 6 and 10 9 pc cm 6 . The UCHii regions are ionized by stars of types from B0.5 to O6. We found a typical gas density of ~10 6 –10 9 cm 3 around the UCH ii regions. The pressure of the UCH ii regions and the dense gas surrounding them are comparable. The expansion timescale of these UCHii regions is determined to be ~10 4 –10 5 yr. The percentage of the dust cores that are associated with H ii regions are 33%, 73%, 4%, and 1% for SgrB2(N), SgrB2(M), SgrB2(S), and SgrB2(DS), respectively. Two-thirds of the dust cores in SgrB2(DS) are associated with outflows. Conclusions. The electron densities of the UCHii regions we identified are in agreement with that of typical UCHii regions, while the radii are smaller than those of the typical UCHii regions. The dust cores in SgrB2(M) are more evolved than in SgrB2(N). The dust cores in SgrB2(DS) are younger than in SgrB2(M) or SgrB2(N). 
    more » « less