skip to main content


Search for: All records

Creators/Authors contains: "Ji, Taoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain.

     
    more » « less
    Free, publicly-accessible full text available May 31, 2025
  2. Influence blocking maximization (IBM) is crucial in many critical real-world problems such as rumors prevention and epidemic containment. The existing work suffers from: (1) concentrating on uniform costs at the individual level, (2) mostly utilizing greedy approaches to approximate optimization, (3) lacking a proper graph representation for influence estimates. To address these issues, this research introduces a neural network model dubbed Neural Influence Blocking (\algo) for improved approximation and enhanced influence blocking effectiveness. The code is available at https://github.com/oates9895/NIB. 
    more » « less