skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jia, Xiaowei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate streamflow prediction is critical for ensuring water supply and detecting floods, while also providing essential hydrological inputs for other scientific models in fields such as climate and agriculture.Recently, deep learning models have been shown to achieve state-of-the-art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical characteristics and weather forcing data.However, these models are only focused on gauged basins and cannot adapt to ungaugaed basins, i.e., basins without training data. Prediction in Ungauged Basins (PUB) is considered one of the most important challenges in hydrology, as most basins in the United States and around the world have no observations. In this work, we propose a meta-transfer learning approach by enhancing imperfect physics equations that facilitate model adaptation. Intuitively, physical equations can often be used to regularize deep learning models to achieve robust regionalization performance under gauged scenarios, but they can be inaccurate due to the simplified representation of physics. We correct such uncertainty in physical equation by residual approximation and let these corrected equations guide the model training process. We evaluated the proposed method for predicting daily streamflow on the catchment attributes and meteorology for large-sample studies (CAMELS) dataset. The experiment results on hydrological data over 19 years demonstrate the effectiveness of the proposed method in ungauged scenarios.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  2. Accurate prediction of dissolved oxygen (DO) concentrations in lakes requires a comprehensive study of phenological patterns across ecosystems, highlighting the need for precise selection of interactions amongst external factors and internal physical-chemical-biological variables. This paper presents the Multi-population Cognitive Evolutionary Search (MCES), a novel evolutionary algorithm for complex feature interaction selection problems. MCES allows models within every population to evolve adaptively, selecting relevant feature interactions for different lake types and tasks. Evaluated on diverse lakes in the Midwestern USA, MCES not only consistently produces accurate predictions with few observed labels but also, through gene maps of models, reveals sophisticated phenological patterns of different lake types, embodying the innovative concept of “AI from nature, for nature”. 
    more » « less
    Free, publicly-accessible full text available September 7, 2025
  3. Abstract

    Accurate and cost-effective quantification of the carbon cycle for agroecosystems at decision-relevant scales is critical to mitigating climate change and ensuring sustainable food production. However, conventional process-based or data-driven modeling approaches alone have large prediction uncertainties due to the complex biogeochemical processes to model and the lack of observations to constrain many key state and flux variables. Here we propose a Knowledge-Guided Machine Learning (KGML) framework that addresses the above challenges by integrating knowledge embedded in a process-based model, high-resolution remote sensing observations, and machine learning (ML) techniques. Using the U.S. Corn Belt as a testbed, we demonstrate that KGML can outperform conventional process-based and black-box ML models in quantifying carbon cycle dynamics. Our high-resolution approach quantitatively reveals 86% more spatial detail of soil organic carbon changes than conventional coarse-resolution approaches. Moreover, we outline a protocol for improving KGML via various paths, which can be generalized to develop hybrid models to better predict complex earth system dynamics.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available June 24, 2025
  5. Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multispectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant, leading to crop growth, which can be observed via satellites. In this paper, we propose a Weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables the detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WSTATT is able to capture the physical properties of crop growth. 
    more » « less
    Free, publicly-accessible full text available April 20, 2025
  6. Accurate prediction of water flow is of utmost importance, particularly for ensuring water supply and informing early actions for floods and droughts. Existing flow prediction methods rely on the input of weather drivers, which hinders their applicability to monitoring small headwater streams due to the limited spatial resolution of existing weather datasets. This paper introduces a new dataset with frequent imagery on streams for water monitoring tasks. Our objective is to automatically predict streamflow for each stream site using frequent images taken at a sub-hourly scale. To overcome the challenge of limited labels for certain stream sites, we employ knowledge transfer from well-observed sites to poorly-observed sites via domain adaptation. As each stream site involves highly variable time series data over long periods, we introduce a novel method STCGAN (Spatial-Temporal Cycle Generative Adversarial Network), which incorporates temporal context by conditioning on the sequence's time and learns overall trends of stream flow variation. It integrates the predictive modeling of streamflow with the cyclic generative process and enhances the prediction with data augmentation using generated synthetic samples. Our experiments demonstrate superior performance of the proposed method using data collected from the West Brook area located in western Massachusetts, US. The proposed method can be further extended to selectively combine information from multiple well-observed stream sites, leading to improved overall performance. 
    more » « less
  7. Shekhar, Shashi ; Papalexakis, Vagelis ; Gao, Jing ; Jiang, Zhe ; Riondato, Matteo (Ed.)
    Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multispectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant, leading to crop growth which can be observed via satellites. In this paper, we propose a weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables the detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WST 
    more » « less
    Free, publicly-accessible full text available April 19, 2025
  8. Free, publicly-accessible full text available April 22, 2025
  9. Training machine learning (ML) models for scientific problems is often challenging due to limited observation data. To overcome this challenge, prior works commonly pre-train ML models using simulated data before having them fine-tuned with small real data. Despite the promise shown in initial research across different domains, these methods cannot ensure improved performance after fine-tuning because (i) they are not designed for extracting generalizable physics-aware features during pre-training, (ii) the features learned from pre-training can be distorted by the fine-tuning process. In this paper, we propose a new learning method for extracting, preserving, and adapting physics-aware features. We build a knowledge-guided neural network (KGNN) model based on known dependencies amongst physical variables, which facilitate extracting physics-aware feature representation from simulated data. Then we fine-tune this model by alternately updating the encoder and decoder of the KGNN model to enhance the prediction while preserving the physics-aware features learned through pre-training. We further propose to adapt the model to new testing scenarios via a teacher-student learning framework based on the model uncertainty. The results demonstrate that the proposed method outperforms many baselines by a good margin, even using sparse training data or under out-of-sample testing scenarios. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025